А) Время движения скорого поезда: x - 1/3 (ч) б) Путь, пройденный товарным поездом до встречи со скорым: S₁ = v₁x = 66x (км) в) Путь, пройденный скорым поездом до встречи с товарным: S₂ = v₂(x - 1/3) = 90(x - 1/3) = 90x - 30 Так как расстояние S = АВ = 256 км, то: S = S₁+S₂ 256 = 66x + 90x - 30 156x = 286 x = 1 5/6 (ч) Таким образом, товарный поезд находился в пути до встречи со скорым 1 час 50 мин и за это время: S₁ = v₁x = 66 * 1 5/6 = 121 (км) Скорый поезд находился в пути до встречи с товарным 1 час 30 мин и за это время S₂ = v₂(x - 1/3) = 90 * 1 5/6 - 30 = 165 - 30 = 135 (км)
ответ: поезда встретятся на расстоянии 121 км от станции А и 135 км от станции В.
Найдите наибольшее и наименьшее значения заданной функции на заданном промежутке: a) y = (2x + 50)/(x - 1), [1;10] Это гипербола у = 52/(х - 1) + 2 с точкой разрыва х = 1. Максимума функция не имеет, в том числе и на заданном промежутке. Минимум на заданном промежутке при х = 10, у = 70/9.
б) y=8 - 5x, [-1;1]. Это прямая, функция убывающая. Максимум на заданном промежутке при х = -1, у = 8+5=13. Минимум на заданном промежутке при х = 1, у = 8-5 = 3.
в) y=3 - cos x, [пи/3; 3пи/2]. При х = π cos = -1, тогда у = 3 + 1 = 4. Это максимум. Минимум равен 5/2 при х = π/3.
г)y=12 + x^2 - x^3/3, (-∞; 1] Производная y' = -x²+2x = -x(x - 2). Приравняв нулю, имеем 2 критические точки х = 0 и х = 2. У функции есть локальный максимум при х = 2 у = 40/3, минимум при х = 0. у = 12. Глобальных минимума и максимума нет.
№2.
Представьте число 9 в виде суммы двух положительных слагаемых так, чтобы сумма удвоенного первого слагаемого и квадрата второго слагаемого была наименьшей. у = 2х + (9-х)² = 2x + 81 - 18x + x² = x² - 16x + 81. y' = 2x - 16 = 2(x -8). Приравняем производную нулю: 2(x -8) = 0, х = 8. Проверяем: 2*8 + 1 = 17. х = 5 у = 2*5 + 9 = 19. Значит, первое слагаемое 1, а второе 8. у = 2 + 64 = 66. Проверим х = 2, у = 4 + 49 = 53 правильно.
№3.
Садовод на своём дачном участке решил огородить прямоугольную клумбу заборчиком длиной 12 м. Каковы должны быть размеры клумбы, чтобы её площадь была наибольшей? Максимум площади при заданном периметре - у квадрата. S = (12/4)² = 9 м².
б) Путь, пройденный товарным поездом до встречи со скорым:
S₁ = v₁x = 66x (км)
в) Путь, пройденный скорым поездом до встречи с товарным:
S₂ = v₂(x - 1/3) = 90(x - 1/3) = 90x - 30
Так как расстояние S = АВ = 256 км, то:
S = S₁+S₂
256 = 66x + 90x - 30
156x = 286
x = 1 5/6 (ч)
Таким образом, товарный поезд находился в пути
до встречи со скорым 1 час 50 мин и за это время:
S₁ = v₁x = 66 * 1 5/6 = 121 (км)
Скорый поезд находился в пути до встречи с товарным
1 час 30 мин и за это время
S₂ = v₂(x - 1/3) = 90 * 1 5/6 - 30 = 165 - 30 = 135 (км)
ответ: поезда встретятся на расстоянии 121 км от станции А
и 135 км от станции В.
Найдите наибольшее и наименьшее значения заданной функции на заданном промежутке:
a) y = (2x + 50)/(x - 1), [1;10]
Это гипербола у = 52/(х - 1) + 2 с точкой разрыва х = 1.
Максимума функция не имеет, в том числе и на заданном промежутке.
Минимум на заданном промежутке при х = 10, у = 70/9.
б) y=8 - 5x, [-1;1]. Это прямая, функция убывающая.
Максимум на заданном промежутке при х = -1, у = 8+5=13.
Минимум на заданном промежутке при х = 1, у = 8-5 = 3.
в) y=3 - cos x, [пи/3; 3пи/2].
При х = π cos = -1, тогда у = 3 + 1 = 4. Это максимум.
Минимум равен 5/2 при х = π/3.
г)y=12 + x^2 - x^3/3, (-∞; 1]
Производная y' = -x²+2x = -x(x - 2).
Приравняв нулю, имеем 2 критические точки х = 0 и х = 2.
У функции есть локальный максимум при х = 2 у = 40/3,
минимум при х = 0. у = 12.
Глобальных минимума и максимума нет.
№2.
Представьте число 9 в виде суммы двух положительных слагаемых так, чтобы сумма удвоенного первого слагаемого и квадрата второго слагаемого была наименьшей.
у = 2х + (9-х)² = 2x + 81 - 18x + x² = x² - 16x + 81.
y' = 2x - 16 = 2(x -8).
Приравняем производную нулю: 2(x -8) = 0, х = 8.
Проверяем: 2*8 + 1 = 17.
х = 5 у = 2*5 + 9 = 19.
Значит, первое слагаемое 1, а второе 8.
у = 2 + 64 = 66.
Проверим х = 2, у = 4 + 49 = 53 правильно.
№3.
Садовод на своём дачном участке решил огородить прямоугольную клумбу заборчиком длиной 12 м. Каковы должны быть размеры клумбы, чтобы её площадь была наибольшей?
Максимум площади при заданном периметре - у квадрата.
S = (12/4)² = 9 м².