Наша функция содержит знак модуля. Следовательно, необходимо рассмотреть две ситуации: 1) если х >0. тогда функция примет вид у= -х^2 +3. Графиком является парабола, ветви которой направлены вниз, вершина параболы имеет координаты (0,3), т.е парабола поднята на 3 масштабных единицы вверх. Точки пересечения параболы с осью ОХ имеет координаты (-V3:0) и (+V3;0) Знак V -корень квадратный. 2) Если х<0, функция принимает вид у=x^2 +3. Графиком также является парабола, но ее ветви направлены вверх, вершина параболы имеет координаты (3,0), т.е график подвинулся вверх по оси ОУ. значит точек пересечения параболы с осью ОХ нет.
Вместо х подставляем 1-2х
И решаем неравенство
Так как дробь меньше 0, то у числителя и знаменателя разные знаки.
1)
{ 2x^2 - 5x + 3 ≤ 0
{ -6x + 3 + √2 + √5 > 0
Раскладываем на множители 1 неравенство
{ (x - 1)(2x - 3) ≤ 0
{ 6x < 3 + √2 + √5
Получаем
{ x ∈ [1; 3/2]
{ x < (3 + √2 + √5)/6 ≈ 1,108 < 3/2
Решение: x1 ∈[1; (3 + √2 + √5)/6)
2)
{ 2x^2 - 5x + 3 ≥ 0
{ -6x + 3 + √2 + √5 < 0
Решаем точно также
{ (x - 1)(2x - 3) ≥ 0
{ 6x > 3 + √2 + √5
Получаем
{ x ∈ (-oo; 1] U [3/2; +oo)
{ x > (3 + √2 + √5)/6 ≈ 1,108 < 3/2
Решение: x ∈ [3/2; +oo)
ответ: x ∈ [1; (3 + √2 + √5)/6) U [3/2; +oo)
1) если х >0. тогда функция примет вид у= -х^2 +3. Графиком является парабола, ветви которой направлены вниз,
вершина параболы имеет координаты (0,3), т.е парабола поднята на 3 масштабных единицы вверх.
Точки пересечения параболы с осью ОХ имеет координаты (-V3:0) и (+V3;0) Знак V -корень квадратный.
2) Если х<0, функция принимает вид у=x^2 +3. Графиком также является парабола, но ее ветви направлены вверх,
вершина параболы имеет координаты (3,0), т.е график подвинулся вверх по оси ОУ. значит точек пересечения параболы с осью ОХ нет.