1) 9^n - 25^n = 3^(2n) - 5^(2n) = (3^n - 5^n)(3^n + 5^n) 2) докажите, что число n³ - n делится на 6 Решение при n = 2, имеем 8 - 2 = 6 утверждение верно. Полагаем, что оно верно при n = m. Покажем, что оно выполняется и при n = m + 1 (m+1)² - (m+1)=m³ - m + 3m² + 3m Первые два слагаемых делятся на 6 по предположению, вторые делятся на 3, но m(m+1) число четное, т.к. четным является либо m либо m+1, следовательно два вторых слагаемых тоже делятся на 6, а значит и вся сумма делится на 6. утверждение доказано
Сначала всё обозначим:
ширина бассейна по условию х;
длина бассейна х+6;
ширина прямоугольника,в котором находится бассейн, х + 1 (добавилось по 0,5 м с каждой стороны за счёт дорожки);
длина этого же прямоугольника х + 7 (также добавилось по 0,5 м с двух сторон за счёт дорожки).
Дальше из площади большого прямоугольника вычитаем площадь малого(бассейн) и получаем разницу 15 кв.метров - площадь всей дорожки по условию:
(x+7) *(x+1) - (x+6) * x = 15
x^2 + x + 7x - x^2 - 6x = 15 2x=8 x=4(ширина бас.); 4+6=10 (длина бас.).
2) докажите, что число n³ - n делится на 6
Решение
при n = 2, имеем 8 - 2 = 6 утверждение верно.
Полагаем, что оно верно при n = m.
Покажем, что оно выполняется и при n = m + 1
(m+1)² - (m+1)=m³ - m + 3m² + 3m
Первые два слагаемых делятся на 6 по предположению,
вторые делятся на 3, но m(m+1) число четное, т.к. четным является
либо m либо m+1, следовательно два вторых слагаемых тоже делятся на 6, а значит и вся сумма делится на 6. утверждение доказано