Основные формулы для решения задачи: V по теч. = Vc + V теч. - скорость по течению реки V против теч. = Vc - V теч. - скорость против течения t по теч.= S/V по теч. - время на путь по течению реки t против теч. = S/V против теч. - время на путь против течения реки По условию: Скорость теплохода в неподвижной воде -это собственная скорость теплохода (Vc) . Путь в одну сторону S = 285 км Время на путь туда-обратно t = 36 - 19 = 17 часов. Пусть скорость течения Vc = х км/ч Путь по течению: Скорость Vпо теч. = (34 + х ) км/ч Время в пути t₁= 285/(34+x) ч. Путь против течения: Скорость V против теч. = (34 - х) км/ч Время в пути t₂ = 285/(34-x) ч. Время на путь туда-обратно : t₁ +t₂ = 17 ч. Уравнение. 285/(34+х) + 285/(34-х) = 17 |×(34+x)(34-x) знаменатели ≠ 0 ⇒ х≠ 34 ; х≠ = -34 285(34-x) + 285(34+x) = 17(34+x)(34-x) 9690 - 285x + 9690 + 285x= 17(34² - x² ) 19380 = 17(1156 -x²) |÷17 1140= 1156 - x² x²= 1156-1140 x² = 16 x₁ = - 4 не удовлетворяет условию задачи х₂ = 4 (км/ч) Vтеч. ответ: 4 км/ч скорость течения реки.
Функция называется чётной, если при всех значениях х в области определения этой функции при изменении знака аргумента на противоположный значение функции не изменяется, то есть y(- x) = y(x) y(x) = 4x - 3x² y(- x) = 4*(-x) - 3*(-x)² = - 4x - 3x² 4x - 3x² ≠ - 4x - 3x² значит функция не является чётной Проверим, может она нечётная, тогда должно выполняться условие y(-x) = - y(x) - y(x) = - (4x - 3x²) = - 4x + 3x² - 4x - 3x² ≠ - 4x + 3x² значит функция не является нечётной Вывод : функция y = 4x - 3x² не является ни чётной ,ни нечётной.
V по теч. = Vc + V теч. - скорость по течению реки
V против теч. = Vc - V теч. - скорость против течения
t по теч.= S/V по теч. - время на путь по течению реки
t против теч. = S/V против теч. - время на путь против течения реки
По условию:
Скорость теплохода в неподвижной воде -это собственная скорость теплохода (Vc) .
Путь в одну сторону S = 285 км
Время на путь туда-обратно t = 36 - 19 = 17 часов.
Пусть скорость течения Vc = х км/ч
Путь по течению:
Скорость Vпо теч. = (34 + х ) км/ч
Время в пути t₁= 285/(34+x) ч.
Путь против течения:
Скорость V против теч. = (34 - х) км/ч
Время в пути t₂ = 285/(34-x) ч.
Время на путь туда-обратно : t₁ +t₂ = 17 ч.
Уравнение.
285/(34+х) + 285/(34-х) = 17 |×(34+x)(34-x)
знаменатели ≠ 0 ⇒ х≠ 34 ; х≠ = -34
285(34-x) + 285(34+x) = 17(34+x)(34-x)
9690 - 285x + 9690 + 285x= 17(34² - x² )
19380 = 17(1156 -x²) |÷17
1140= 1156 - x²
x²= 1156-1140
x² = 16
x₁ = - 4 не удовлетворяет условию задачи
х₂ = 4 (км/ч) Vтеч.
ответ: 4 км/ч скорость течения реки.
y(- x) = y(x)
y(x) = 4x - 3x²
y(- x) = 4*(-x) - 3*(-x)² = - 4x - 3x²
4x - 3x² ≠ - 4x - 3x² значит функция не является чётной
Проверим, может она нечётная, тогда должно выполняться условие
y(-x) = - y(x)
- y(x) = - (4x - 3x²) = - 4x + 3x²
- 4x - 3x² ≠ - 4x + 3x² значит функция не является нечётной
Вывод : функция y = 4x - 3x² не является ни чётной ,ни нечётной.