80 !
дроби 8ac2, 13a−ca+c и 9c к общему знаменателю.
выбери правильный вариант (варианты) ответа:
8a2+cc2(a+c),13ac2−cc2(a+c)и9ca+cc2(a+c)
другой ответ
8a2+8acc(a+c),13ac−c2c(a+c)и 9a+9cc(a+c)
8a2+8aca+c,13a−ca+cи9+ca+c
8a2+8acc2(a+c),13ac2−c3c2(a+c)и 9ca+9c2c2(a+c)
8a2+cc2(a+c),13ac2−c2c2(a+c)и9ca+9cc2(a+c)
Объяснение:
Выносим общий множитель √2*sinx за скобки
√2*sinx*(2-cosx)+cosx-2=0
Выносим знак минус за скобку
√2*sinx*(2-cosx)-(2-cosx)=0
Выносим за скобку общий множитель 2-cosx
(2-cosx)*(√2*sinx-1)=0
2-cosx=0 или √2*sinx-1=0
1) -cosx=-2 - не существует, поскольку cosx принадлежит [-1:1]
2) √2*sinx=1 делим на √2
sinx= 1/√2
sinx= 1/√2
используем обратную тригонометрическую ф-цию
x=arcsin(1/√2)
sinx периодическая ф-ция добавляем 2Пn, n принадлежит Z
x=arcsin(1/√2)+2Пn, n принадлежит Z
Решаем уравнение
x=п/4+2Пn, n принадлежит Z
Вроде так
одновременно с этим должно выполняться неравенство √N<A+1 обозначим (2)
Т.к. число N на 1 меньше полного квадрата, то √(N+1)=A+1 обозначим (3),
возведем обе части (3) в квадрат, получим N+1=A²+2A+1, N=A²+2A (4),
возведем обе части (2)в квадрат, получим N<A²+2A+1, подставим N из (4), получим A²+2A<A²+2A+1, 0<1, что всегда выполняется, значит, при данных условиях неравенство (2) всегда выполняется.
Тогда, получаем, что нужно решить систему √N≥A+0,99 (1), √(N+1)=A+1 (3), где
N,A - натуральные числа, и надо найти наименьшие.
Мы уже получили равенство (4) из равенства (3).
Возведем в квадрат обе части (1) и подставим N из (4):
N≥(A+0,99)², A²+2A≥A²+1,98A+0,9801, 0,02A≥0,9801, A≥0,9801/0,02, A≥49,005
ближайшее целое A=50, тогда √(N+1)=51, N+1=2601, N=2600
ответ: наименьшее N=2600