В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
ujiuyh
ujiuyh
02.07.2020 16:03 •  Алгебра

[80 найдите точки локального максимума и минимума функции:

f(x)= x^4 -x^3 +4

желательно с объяснением) заранее ❤

Показать ответ
Ответ:
tanyabilotserko
tanyabilotserko
10.10.2020 10:19

Дана функция:

f(x) = {x}^{4} - {x}^{3} + 4

Найдём её производную ( f'(x) = g(x) ):

g(x) = 4x {}^{3} - 3 {x}^{2}

Для поиска и отсеивание экстремумов приравняем производную к нулю:

g(x) = 0 \\ 4 {x}^{3} - 3 {x}^{2} = 0 \\ {x}^{2} (4x - 3) = 0 \\ x = 0 \\ x = \frac{3}{4}

Мы нашли 2 точки возможного экстремума. Проверим, действительно ли они являются точками экстремума. Для этого возьмём по точке в окрестностях этих, и подставим в g(x), чтобы определить знак производной.

1) Подставим в g(x) точку -1, которая < 0:

g( - 1) = 4 \times {( - 1)}^{3} - 3 \times ( - 1)^{2} \\ g( - 1) = - 7 < 0

Так как g(-1) < 0, то функция в окрестности точки -1 спадает;

2) Подставим в g(x) точку 0.5, которая лежит между 0 и 3/4:

g(0.5) = 4(0.5)^{3} - 3(0.5)^{2} \\ g(0.5) = - \frac{1}{4} < 0

Так как g(0.5) < 0, то функция в окрестности 0.5 спадает;

3) Подставим в g(x) точку 1, которая > 3/4:

g(1) = 4 \times 1^{3} - 3 \times {1}^{2} \\ g(1) = 1 0

Так как g(1) >0, то функция в окрестности точки 1 возрастает.

Имеем:

На промежутке хє(-∞;0) функция спадает; хє(0;3/4) – функция спадает; хє(3/4;+∞) – функция возрастает. Значит у данной функции существует единственная точка экстремума – 3/4.

Но так как в окрестности точки 3/4 функция производная функции меняет свой знак с "-" на "+", то эта точка является локальным минимумом функции. Тогда локальный максимум функции – 0.

Это и есть ответ.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота