Объяснение:
1.Представьте в виде степени выражение
А) х5∙х12∙х3 x5x12x3=x5+12+3=x20
Б) y13: y9 y13/y9=y13-9=y4 ( за задание )
2.Представьте в виде произведения степеней степени.
А) (ax)7 a7=x7
Б) (nm) 15n15=m15
( за задание )
3)Упростите выражение
А) 2 а-2 ∙3а4 2a-2*3a=2a (1-3a2)=46-3=4a9
Б) 24 а6: (6а-3)
4) Представьте в стандартном виде число.
А) 13000000000 13*10/9
Б) 0,000000015 15*10-9
5) Приведите в стандартный вид одночлены.
А) 5а2 ∙(-3) а3 в4 5a/2(-3)a/3b4-15=5b4
Б) 8ас5 ∙(-2а4) 8ac5*-2a4*16a5c5
Объяснение:
1.Представьте в виде степени выражение
А) х5∙х12∙х3 x5x12x3=x5+12+3=x20
Б) y13: y9 y13/y9=y13-9=y4 ( за задание )
2.Представьте в виде произведения степеней степени.
А) (ax)7 a7=x7
Б) (nm) 15n15=m15
( за задание )
3)Упростите выражение
А) 2 а-2 ∙3а4 2a-2*3a=2a (1-3a2)=46-3=4a9
Б) 24 а6: (6а-3)
( за задание )
4) Представьте в стандартном виде число.
А) 13000000000 13*10/9
Б) 0,000000015 15*10-9
( за задание )
5) Приведите в стандартный вид одночлены.
А) 5а2 ∙(-3) а3 в4 5a/2(-3)a/3b4-15=5b4
Б) 8ас5 ∙(-2а4) 8ac5*-2a4*16a5c5
( за задание )
дифференцированием.
а) ∫(3x^2+4/x+cosx+1)dx=x³+4·ln IxI+sinx +x +C
проверка:
(x³+4·ln IxI+sinx +x +C)'=3x²+4/x +cosx+1 - верно
б) ∫[4x/√(x^2+4)]dx= [ (x^2+4)=t dt=2xdx ] =∫2dt/√t=4√t+c=4√(x^2+4)+c
проверка:
(4√(x^2+4)+c)'=[4(1/2)/√(x^2+4)]·2·x =4x/√(x^2+4) - верно
в) ∫-2xe^xdx =-2 ∫xe^xdx= [ x=u e^xdx=dv ]
[ dx=du e^x=v ]
-2 ∫xe^xdx=-2( u·v- ∫vdu)=-2(x·e^x-∫e^x·dx)=-2(x· e^x-e^x)+c=-2·(e^x)·(x-1)+c
проверка:
(-2·(e^x)·(x-1)+c)'=-2((e^x)'·(x-1)+(e^x)·(x-1)')=-2((e^x)·(x-1)+(e^x))=-2(e^x)·x
=-2x·(e^x) - верно