2. Упорядочим имеющиеся числа по возрастанию: 3, 4, 4, 7, 15, 15, 16, 24. Между числами этого упорядоченного ряда где-то нужно вставить число х, тогда по определению, медианой ряда будет число, расположенное ровно посередине, т.е. 5-ое по счету число.
Если х<7, то 5-ым числом, т.е. медианой, будет 7, откуда (x+88)/9=7, х=7*9-88=-25<7, т.е. -25 удовлетворяет условию.
Если 7≤х≤15, то медианой будет само х, но тогда (x+88)/9=х, откуда х=11, тоже подходит.
Если х>15, то медиана ряда равна 15, т.е. (x+88)/9=15, откуда х=9*15-88=47.
координаты точки пересечения заданных прямых ( -1; -1)
Объяснение:
При пересечении двух графиков (в данном случае прямых) координаты совпадают. Следовательно, мы можем приравнять функции заданных графиков.
-2х - 3 = 2х + 1
-2х - 2х = 1 + 3
-4х = 4
х = -1
Значение х - (-1). Мы можем подставить значение х в любую функцию заданных графиков.
у = -2х - 3
у = -2 * (-1) - 3
у = 2 - 3
у = -1
ИЛИ
у = 2х + 1
у = 2* (-1) + 1
у = -2 + 1
у = -1
Результат один и тот же. Графики данных функций (у = -2х - 3 и у = 2х + 1) пересекаются в точке, координаты которой (-1; -1)
Пусть пропущенное число равно х.
1. Найдем среднее арифметическое:
(х+3+4+4+7+15+15+16+24)/9=(x+88)/9
2. Упорядочим имеющиеся числа по возрастанию: 3, 4, 4, 7, 15, 15, 16, 24. Между числами этого упорядоченного ряда где-то нужно вставить число х, тогда по определению, медианой ряда будет число, расположенное ровно посередине, т.е. 5-ое по счету число.
Если х<7, то 5-ым числом, т.е. медианой, будет 7, откуда (x+88)/9=7, х=7*9-88=-25<7, т.е. -25 удовлетворяет условию.
Если 7≤х≤15, то медианой будет само х, но тогда (x+88)/9=х, откуда х=11, тоже подходит.
Если х>15, то медиана ряда равна 15, т.е. (x+88)/9=15, откуда х=9*15-88=47.
ответ: подходят три числа: -25; 11; 47.