Задание: разложить на множители. множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов. преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители. 1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем: m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов.
преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители.
1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем:
m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
4q(p-1)+p-1=4q*(p-1)+(p-1)*1=(p-1)*(4q+1)
4q(p-1)+1-p=4q*(p-1)-1*(p-1)=(p-1)*(4q-1)
P = 2(a+b), где a и b - стороны прямоугольника
Формула площади прямоугольника:
S = ab, где a и b - стороны прямоугольника
Составляем систему:
2(a+b) = 26,
ab = 42
a+b = 26/2,
ab = 42
a+b = 13,
ab = 42
a = 13-b,
b(13-b) = 42
Работаем с получившимся квадратным уравнением
b(13-b) = 42
-b^2 + 13b - 42 = 0
b^2 - 13b + 42 = 0
По формуле дискриминанта решаем его, получаем корни b1 = 7, b2 = 6
Подставляем значения b для а:
a = 13-b; a1 = 13 - b1 = 13 - 7 = 6, a2 = 13 - b2 = 13 - 6 =7.
Получается, стороны прямоугольника 6 см и 7 см.