№1. Одна сторона прямоугольника на 2 см меньше стороны квадрата, а вторая сторона больше, чем сторона квадрата, на 4 см. Найдите сторону квадрата, если площадь прямоугольника равна 40 см².
Решение
сторона квадрата = хсм. Тогда стороны прямоугольника будут
х -2 и х +4
(х-2)(х+4) = 40
х² +2х -8 = 40
х² +2х -48 = 0
По т. Виета корни 6 и -8(не подходит по условию задачи)
ответ : сторона квадрата = 6см
№2. Найдите катеты прямоугольного треугольника, если известно, что один из них на 4 см меньше другого, а гипотенуза равна 20 см.
Можно и без применения производной : f²(x) = (√(16 - x ) +√(x-14) )² =2+2√( (16 - x ) *(x-14) ) ≤ 2+(16 - x +x-14)=4 , равенство имеет место ,если 16 - x =x-14, т.е. при x=15. Затем из f²(x) ≤ 4 ⇒ f(x) ≤ 2 . || f(x) >0 ||
2-ой Это не мое решение ( более искусственный, использован частный случай неравенства Коши) * * * √ab ≤(a+b) /2 при a≥0 ,b ≥ 0 * * * ОДЗ :x∈[14;16] Оценим обе части равенства √(16-x ) =√(16-x )*1 ≤ (17-x)/2 (3) ; равенство, если 16 -x=1 ⇒x=15. √(x-14)= √(x-14)*1 ≤ (x-13)/2 (4) ; равенство, если x-14=1 ⇒x=15. Из (3) и (4) получаем √(16-x)+√(x-14) ≤ 2 * * * (17-x)/2 +(x-14)/2 =2 * * *
правая часть равенства x²-30x +227 =(x-15)² +2 ≥ 2 равенство опять , если x=15. 2 ≥ √(16-x ) +√(x-14) = x²-30x +227 ≥ 2 равенство имеет место только при x=15.
№1. Одна сторона прямоугольника на 2 см меньше стороны квадрата, а вторая сторона больше, чем сторона квадрата, на 4 см. Найдите сторону квадрата, если площадь прямоугольника равна 40 см².
Решение
сторона квадрата = хсм. Тогда стороны прямоугольника будут
х -2 и х +4
(х-2)(х+4) = 40
х² +2х -8 = 40
х² +2х -48 = 0
По т. Виета корни 6 и -8(не подходит по условию задачи)
ответ : сторона квадрата = 6см
№2. Найдите катеты прямоугольного треугольника, если известно, что один из них на 4 см меньше другого, а гипотенуза равна 20 см.
Один катет = х, другой = х - 4
По т. Пифагора х² + (х -4)² = 400
х² + х² -8х +16 = 400
2х² -8х -384 = 0
х² -4х -192 = 0
х = 2 +-√(4 +192) = 2 +-14
х₁ = 16 и х₂ = -12(не подходит по условию задачи)
ответ: катеты 16см и 12 см
Решите уравнение √(16 - x ) +√(x-14) =x²-30x +227 ответ: x=15 .
обозначаем f(x) = √(16 - x ) +√(x-14)
D(f) : { 16 -x ≥0 ; x -14 ≤0 .⇔x∈[14;16] * * * ООФ * * *
Очевидно f(x) > 0, т.к. 16 - x и x -14 нулевое значение принимают при разных значениях переменного x . * * * система 16 - x =0=x -14 не имеет решения * * *
f '(x) =( √(16 - x ) +√(x-14) ) ' = -1/2√(16 - x) +1/2√(x-14) =
1/2( √(16-x) - √(x -14) ) /2√(16 - x) *√(x-14)
f '(x) =0 ⇒√(16-x) - √(x-14)=0 ⇒x=15.
f ' (x) + -
14 15 16
f(x) ↑ max ↓
maxf(x) = f(15) =2 . (1)
x∈[14;16]
g(x) =x²-30x +227 =(x-15)² +2 ≥2
min g(x) = g(15) =2 . (2)
Из (1) и (2) следует x=15 .
Можно и без применения производной :
f²(x) = (√(16 - x ) +√(x-14) )² =2+2√( (16 - x ) *(x-14) ) ≤ 2+(16 - x +x-14)=4 ,
равенство имеет место ,если 16 - x =x-14, т.е. при x=15.
Затем из f²(x) ≤ 4 ⇒ f(x) ≤ 2 . || f(x) >0 ||
2-ой Это не мое решение
( более искусственный, использован частный случай неравенства Коши) * * * √ab ≤(a+b) /2 при a≥0 ,b ≥ 0 * * *
ОДЗ :x∈[14;16]
Оценим обе части равенства
√(16-x ) =√(16-x )*1 ≤ (17-x)/2 (3) ; равенство, если 16 -x=1 ⇒x=15.
√(x-14)= √(x-14)*1 ≤ (x-13)/2 (4) ; равенство, если x-14=1 ⇒x=15.
Из (3) и (4) получаем √(16-x)+√(x-14) ≤ 2 * * * (17-x)/2 +(x-14)/2 =2 * * *
правая часть равенства x²-30x +227 =(x-15)² +2 ≥ 2
равенство опять , если x=15.
2 ≥ √(16-x ) +√(x-14) = x²-30x +227 ≥ 2
равенство имеет место только при x=15.