а) 7(х - 1) - 12 = 30;
7x-7-12=30
7x=30+12+7
7x=49
x=49/7
x=7
б) 3(х - 8) = 4х - 9;
3x-8*3=4x-9
3x-4x=24-9
x=-15
в) 10х - 2(4х - 1) = 19;
10x-8x-2=19
2x=21
x=21/2
x=7.5
г) 13 - х = 6(9 - х);
13-х = 54-6х
6х-х=54-13
5х=41
x=41/5
x=8.2
д) 12 - 3(х - 7) = 5х - 14;
12-3x-21=5x-14
5x+3x=12-21+14
8x=5
x=5/8=0.625
е) 5(х - 3) = -15х - 2(1 - 5х);
5x-15=-15x-2+10x
5x+15x-10x=-2+15
10x=13
x=13/10=1.3
ж) 0,5(х - 3) - 0,3х - 6 = 0,2х - 25;
0.5x-1.5-0.3x-6=0.2x-25
0.5x-0.3x-0.2x=-25+6+1.5
0=32.5 НЕТ РЕШЕНИЙ
з) 0,7х - 0,5(4х + 3) = -2(0,7х - 2);
0.7x-2x-1.5=-1.4x+4
0.7x-2x+1.4x=4+1.5
0.1x=5.5
x=5.5/0.1
x=55
и) 7(0,2х - 1) - 3 (0,1х + 4) = 6(11 - 0,1х);
1.4x-7-0.3x-12=66-0.6x
1.4x-0.3x+0.6x=66+7+12
1.7x=85
x=85/1.7
x=50
к) 0,4(1,5х - 1/4) = 0,6х - 0,1.
0.6x-0.1=0.6x-0.1
0=0 x - любое число
стороны 2 м и 7 м,
периметр 18 м
Объяснение:
Пусть одна сторона х м, тогда другая (х+5). Площадь прямоугольника тогда будет равна х(х+5) м². Составим уравнение:
х(х+5)=14
х²+5х-14=0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = 5² - 4·1·(-14) = 25 + 56 = 81
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
= (-5 - √8)/12·1 = (-5 - 9)/2 = = -7 (не корень, так как длина не может быть отрицательной)
= (-5 + √8)/12·1 = (-5 + 9)/2 = = 2 м одна сторона, тогда вторая х+5=2+5=7 м
Периметр (2+7)*2=18 м
а) 7(х - 1) - 12 = 30;
7x-7-12=30
7x=30+12+7
7x=49
x=49/7
x=7
б) 3(х - 8) = 4х - 9;
3x-8*3=4x-9
3x-4x=24-9
x=-15
в) 10х - 2(4х - 1) = 19;
10x-8x-2=19
2x=21
x=21/2
x=7.5
г) 13 - х = 6(9 - х);
13-х = 54-6х
6х-х=54-13
5х=41
x=41/5
x=8.2
д) 12 - 3(х - 7) = 5х - 14;
12-3x-21=5x-14
5x+3x=12-21+14
8x=5
x=5/8=0.625
е) 5(х - 3) = -15х - 2(1 - 5х);
5x-15=-15x-2+10x
5x+15x-10x=-2+15
10x=13
x=13/10=1.3
ж) 0,5(х - 3) - 0,3х - 6 = 0,2х - 25;
0.5x-1.5-0.3x-6=0.2x-25
0.5x-0.3x-0.2x=-25+6+1.5
0=32.5 НЕТ РЕШЕНИЙ
з) 0,7х - 0,5(4х + 3) = -2(0,7х - 2);
0.7x-2x-1.5=-1.4x+4
0.7x-2x+1.4x=4+1.5
0.1x=5.5
x=5.5/0.1
x=55
и) 7(0,2х - 1) - 3 (0,1х + 4) = 6(11 - 0,1х);
1.4x-7-0.3x-12=66-0.6x
1.4x-0.3x+0.6x=66+7+12
1.7x=85
x=85/1.7
x=50
к) 0,4(1,5х - 1/4) = 0,6х - 0,1.
0.6x-0.1=0.6x-0.1
0=0 x - любое число
стороны 2 м и 7 м,
периметр 18 м
Объяснение:
Пусть одна сторона х м, тогда другая (х+5). Площадь прямоугольника тогда будет равна х(х+5) м². Составим уравнение:
х(х+5)=14
х²+5х-14=0
Найдем дискриминант квадратного уравнения:
D = b² - 4ac = 5² - 4·1·(-14) = 25 + 56 = 81
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
= (-5 - √8)/12·1 = (-5 - 9)/2 = = -7 (не корень, так как длина не может быть отрицательной)
= (-5 + √8)/12·1 = (-5 + 9)/2 = = 2 м одна сторона, тогда вторая х+5=2+5=7 м
Периметр (2+7)*2=18 м