Найдём 1 производную функции y'=3*x²-6 и приравняем её к нулю 3*х²=6⇒х1=√2 (min, производная меняет знак с - на + при возрастании х) и х2=-√2 (min, производная меняет знак с + на - при возрастании х). Левее х2 и правее х1 производная неограниченно возрастает, поэтому к точке х2 слева функция возрастает, и вправо от точки х1 функция также возрастает. В промежутке х1 и х2 функция убывает.
ответ: точки экстремума х1 и х2. К точке х2 слева функция возрастает, и вправо от точки х1 функция также возрастает. В промежутке х1 и х2 функция убывает.
1) 15y²+6y =5y+2
15y²-5y+6у-2=0
5у(3у-1)+2(3у-1)=0
(3у-1)(5у+2)=0
3у-1=0 5у+2=0
3у=1 5у=-2
у=1/3 у=-2/5
ответ: -2/5; 1/3.
2) y³-2y²+у-2=0
y²(у-2)+(у-2)=0
(у-2)(y²+1)=0
у-2=0 y²+1=0
у=2 y²=-1 нет корней, так как квадрат всегда неотрицательное число
ответ: 2.
3) y³+6y²-y-6=0
y²(у+6)-(у+6)=0
(у+6)(y²-1)=0
у+6=0 y²-1=0
у=-6 y²=1
у=1 и у=-1
ответ: -1; 1; 2.
4) y³-12=3y²-4y
y³-3y²+4у-12=0
y²(у-3)+4(у-3)=0
(у-3)(y²+4)=0
у-3=0 y²+4=0
у=3 y²=-4 нет корней, так как квадрат всегда неотрицательное число
ответ: 3.
ответ: точки экстремума х1 и х2. К точке х2 слева функция возрастает, и вправо от точки х1 функция также возрастает. В промежутке х1 и х2 функция убывает.