9 «А» сыныбында 28 оқушы оқиды, оның ішінде 15 қыз бала және 13 ер бала бар. а) Оқушылардың ішінен көшбасшы мен оның көмекшісін неше тәсілмен таңдауға болады б)Үш оқушыдан тұратын кезекшілерді таңдаудың неше тәсілі бар? с)Кезекшілер ішінде кемінде 2 қыз бала болсын деген шарт енгізген жағдайда, 3 кезекшіні таңдаудың неше тәсілі бар?
В числителе второй дроби вынести 3 за скобки, в знаменателе второй дроби квадрат суммы, свернуть:
=(x+4)/(x-3) * [3(x-3)]/(x+4)²=
Чтобы умножить дробь на дробь, нужно числитель первой дроби умножить на числитель второй, а знаменатель первой дроби умножить на знаменатель второй:
=[(x+4)*3(x-3)] / [(x-3)*(x+4)(x+4)]=
сокращение (x+4) и (x+4) на (x+4), (x-3) и (x-3) на (x-3):
=3/(x+4);
2)3/(x+4) : 15/(xy+4y)=
Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй дроби, а знаменатель первой умножить на числитель второй дроби:
Сначала мы пишем систему и смотрим на коэффициенты при х и у.
В данном случае, особой разницы нет, поэтому останавливаемся на коэффициентах при х. В первом уравнении коэффициент при х равен 4, а во втором 3. Нам надо, чтобы при почленном сложении двух уравнений сумма коэффициентов при х равнялась нулю. Этого можно добиться искусственно, если первое уравнение домножить на 3, а второе уравнение домножить на (-4) (данная операция обозначена вертикальными "палочками", после которых стоит знак умножения на нужное нам число
Получаем следующую систему:
Теперь складываем уравнения "почленно", т.е. иксы с иксами, игреки с игреками, свободные члены со свободными членами. В результате получаем:
Осталось найти х. Для этого найденное значение у=-12 подставим в любое из первоначальных уравнений, например, в первое:
Осталось записать ответ. Допускаются следующие записи:
у/5.
Объяснение:
Упростите выражение:
(x+4)/(x-3) * (3x-9)/(x²+8x+16) : 15/(xy+4y)=
1)(x+4)/(x-3) * (3x-9)/(x²+8x+16)=
В числителе второй дроби вынести 3 за скобки, в знаменателе второй дроби квадрат суммы, свернуть:
=(x+4)/(x-3) * [3(x-3)]/(x+4)²=
Чтобы умножить дробь на дробь, нужно числитель первой дроби умножить на числитель второй, а знаменатель первой дроби умножить на знаменатель второй:
=[(x+4)*3(x-3)] / [(x-3)*(x+4)(x+4)]=
сокращение (x+4) и (x+4) на (x+4), (x-3) и (x-3) на (x-3):
=3/(x+4);
2)3/(x+4) : 15/(xy+4y)=
Чтобы разделить дробь на дробь, нужно числитель первой дроби умножить на знаменатель второй дроби, а знаменатель первой умножить на числитель второй дроби:
=[3*у(x+4)] / [(x+4)*15]=
сокращение (x+4) и (x+4) на (x+4), 3 и 15 на 3:
=у/5.
Сначала мы пишем систему и смотрим на коэффициенты при х и у.
В данном случае, особой разницы нет, поэтому останавливаемся на коэффициентах при х. В первом уравнении коэффициент при х равен 4, а во втором 3. Нам надо, чтобы при почленном сложении двух уравнений сумма коэффициентов при х равнялась нулю. Этого можно добиться искусственно, если первое уравнение домножить на 3, а второе уравнение домножить на (-4) (данная операция обозначена вертикальными "палочками", после которых стоит знак умножения на нужное нам число
Получаем следующую систему:
Теперь складываем уравнения "почленно", т.е. иксы с иксами, игреки с игреками, свободные члены со свободными членами. В результате получаем:
Осталось найти х. Для этого найденное значение у=-12 подставим в любое из первоначальных уравнений, например, в первое:
Осталось записать ответ. Допускаются следующие записи:
х=-6, у=-12 или (-6;-12)