9. Диагонали трапеции делят ее среднюю линию на части, каждая из которых равна 6 cm. Найдите основания трапеции.
10. В равнобедренной трапеции диагональ длиной 6 cm образует
с основанием угол 60°. Найдите среднюю линию трапеции.
11. Большее основание трапеции в 3 раза больше меньшего. Найдите
основания трапеции, если средняя линия равна 20 cm.
12. Периметр трапеции 40 cm, сумма не параллельных сторон равна
16 cm. Найдите среднюю линию трапеции.
Объяснение: это формулы сокращенного умножение, если умножить все это по порядку можно получить:
а) х³-y³
во втором точно также потому что 25 это 5²;
б) 5³-a³=> 125-a³
в) (2m)³-(5n)³=> 8m³-125n³
г) (7p)³ + q³ => 343p³ + q³
д) (х/2)³- (y/3)³ => x³/8 - y³/27
е) (0,1а)³-(0,2b³) => 0,001а³ - 0,008b³;
Дополнительно:
Это нельзя объяснить, если раскрыть скобки умножая по правилам алгебры получаться эти значения, я напишу тебе 7 формул
1) a²-b²=(a-b)×(a+b);
2) (a+b)² = a²+2ab+b²;
3) (a-b)² = a²-2ab+b²;
4) a³-b³= (a-b)×(a²+ab+b²);
5) a³+ b³ = (a+b)×(a²-ab+b²);
6) (a-b)³= a³-3a²b+3ab²-b³;
7) (a+b)³ = a³+3a²b+3ab²+b³;
Объяснение: это формулы сокращенного умножение, если умножить все это по порядку можно получить:
а) х³-y³
во втором точно также потому что 25 это 5²;
б) 5³-a³=> 125-a³
в) (2m)³-(5n)³=> 8m³-125n³
г) (7p)³ + q³ => 343p³ + q³
д) (х/2)³- (y/3)³ => x³/8 - y³/27
е) (0,1а)³-(0,2b³) => 0,001а³ - 0,008b³;
Дополнительно:
Это нельзя объяснить, если раскрыть скобки умножая по правилам алгебры получаться эти значения, я напишу тебе 7 формул
1) a²-b²=(a-b)×(a+b);
2) (a+b)² = a²+2ab+b²;
3) (a-b)² = a²-2ab+b²;
4) a³-b³= (a-b)×(a²+ab+b²);
5) a³+ b³ = (a+b)×(a²-ab+b²);
6) (a-b)³= a³-3a²b+3ab²-b³;
7) (a+b)³ = a³+3a²b+3ab²+b³;