Формула объема призмы: Площадь основания (Sосн.) умножить на высоту (h), тобишь:
Vпризмы=Sосн.*h
Площадь основания правильного шестиугольника равна: три корня из трех на два умножить на сторону в квадрате(a), тобишь:
Sосн.=3√3/2*a^2
Из текста задачи ясно, что объем не изменился. Получаем: V1=V2, а сторона основания второй призмы в два раза меньше, и обозначив сторону первой за a, сторону второй обозначим через a/2.
Приравниванием формулы объема первой и второй призмы,обозначаем искомую высоту через x и получаем уравнение:
3√3/2*a^2*24=3√3/2*a^2/4*x
Делим обе части уравнения на 3√3/2 и получаем:
a^2*24=a^2/4*x
Чтобы избавится от знаменателя во второй части домнажаем обе части на 4:
1. 4⅓+3(1/5)=(13/3)+(16/5)=(13×5+16×3)/15=(65+48)/15=(113/15)
2. (113/15)÷113=(113/15)×(1/113)=(1/15)
2) (6-7⅛)×((2/9)+⅔)=(-1)
1. 6-7⅛=6-(57/6)=(6×8-57)/8=(48-57)/8=(-9/8)
2. (2/9)+⅔=(2+2×3)/9=(8/9)
3. (-9/8)×(8/9)=-1
3) 17÷(4⅓-3(1/5))=15
1. 4⅓-3(1/5)=(13/3)-(16/5)=(13×5-16×3)/15=(65-48)/15=17/15
2. 17÷(17/15)=17×15/17=15
4) (15-4⅛)×(3(14/15)-2(3/5))=14,5
1. 15-4⅛=15-(33/8)=(15×8-33)/8=(120-33)/8=(87/8)
2. 3(14/15)-2(3/5)=(59/15)-(13/5)=(59-13×3)/15=(59-39)/15=20/15
3. (87/8)×(20/15)=(87×4×5)/(2×4×3×5)=87/6=29/2=14½=14,5
Формула объема призмы: Площадь основания (Sосн.) умножить на высоту (h), тобишь:
Vпризмы=Sосн.*h
Площадь основания правильного шестиугольника равна: три корня из трех на два умножить на сторону в квадрате(a), тобишь:
Sосн.=3√3/2*a^2
Из текста задачи ясно, что объем не изменился. Получаем: V1=V2, а сторона основания второй призмы в два раза меньше, и обозначив сторону первой за a, сторону второй обозначим через a/2.
Приравниванием формулы объема первой и второй призмы,обозначаем искомую высоту через x и получаем уравнение:
3√3/2*a^2*24=3√3/2*a^2/4*x
Делим обе части уравнения на 3√3/2 и получаем:
a^2*24=a^2/4*x
Чтобы избавится от знаменателя во второй части домнажаем обе части на 4:
96*a^2=a^2x
x=96a^2/a^2
В результате a^2 сокращается и остается 96:
x=96.
ответ:96 см.