Уравнение прямой на плоскости имеет в общем случае (когда прямая не параллельна ни одной из координатных осей) вид ax+by+c=0, где x и y - координаты любой точки, принадлежащей прямой. 1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox. 2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1
Положив x 2 = y , получим квадратное уравнение y 2 +4 y -21=0 , откуда находим y 1 = -7, y 2 =3 . Теперь задача сводится к решению уравнений x 2 = -7, x 2 =3 . Первое уравнение не имеет действительных корней, из второго находим
x1=√3 x2=-√3
которые являются корнями заданного биквадратного уравнения.
Объяснение:
Биквадратным называется уравнение вида ax 4 + bx 2 + c =0 , где a <> 0 .
Биквадратное уравнение решается методом введения новой переменной: положив x 2 = y , прийдем к квадратному уравнению ay 2 + by + c =0 .
1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox.
2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1
x 4 +4 x 2 -21=0 .
Положив x 2 = y , получим квадратное уравнение y 2 +4 y -21=0 , откуда находим y 1 = -7, y 2 =3 . Теперь задача сводится к решению уравнений x 2 = -7, x 2 =3 . Первое уравнение не имеет действительных корней, из второго находим
x1=√3 x2=-√3
которые являются корнями заданного биквадратного уравнения.
Объяснение:
Биквадратным называется уравнение вида ax 4 + bx 2 + c =0 , где a <> 0 .
Биквадратное уравнение решается методом введения новой переменной: положив x 2 = y , прийдем к квадратному уравнению ay 2 + by + c =0 .