|2x - 5| + | 4 - x| ≤ x +1 Данный пример- это неравенство с модулем. Задание ( любое) с модулем решается одинаково: надо снять знак модуля, получить примитивные неравенства и решать их. Решить неравенство- это найти значения переменной, обращающие данное неравенство в верное числовое неравенство. Простой пример: 2х ≥10, разделим обе части неравенства на 2, получим равносильное неравенство(имеющее то же решение, что и исходное), получим х ≥ 5(это алгебраическая форма решения.) Можно на числовой прямой :-∞ 5 +∞
Можно записать этот числовой промежуток:[5; +∞) Все эти 3 записи равноправные. А теперь твой пример. Чтобы снять знак модуля, надо помнить, что |x| = x при х ≥0 и |x| = -x при х < 0 Начали? 1) ищем "нули" подмодульных выражений: 2х-5 = 0 4-х = 0 х=2,5 х = 4 Эти 2 числа разбивают числовую прямую на 3 промежутка. На каждом промежутке наше неравенство будет иметь свой вид. -∞ 2,5 4 +∞ - + + это знаки (2х -5) + + - это знаки (4-х) теперь "сочиняем" на каждом промежутке неравенство без модулей: а) (-∞; 2,5] -(2x-5) +4-x ≤x +1 -2x +5 +4 -x ≤ x +1 -4x ≤-8 x≥ 2 Вывод: [2;2,5] б) (2.5;4] 2x-5 +4 -x ≤ x +1 2x ≤ 2 x ≤ 1 Вывод : несовместны эти 2 записи в)(4; +∞) 2х - 5 -(4 -х) ≤ х +1 2х -5 -4 +х ≤ х +1 2х ≤10 х ≤ 5 Вывод: х∈(4;5]
Объяснение:
1. Запишите квадратное уравнение, у которого первый коэффициент равен -5, второй коэффициент равен 3. Свободный член равен нулю.
ax²+bx+c=0 - общий вид квадратного уравнения.
в нашем случае а=-5, b=3 с=0. Таким образом уравнение имеет вид:
-5x²+3x+0=0 и окончательно -5x²+x=0.
***
2. Запишите приведённое квадратное уравнение, у которого второй
коэффициент и свободный член равны -3.
Приведенное квадратное уравнение — это уравнение, где коэффициент, при одночлене высшей степени, равен единице.
То есть а=1. b=-3 и с =-3. Тогда уравнение принимает вид:
x²-3x-3=0.
***
3. Запишите неполное квадратное уравнение, у которого первый коэффициент равен -3, свободный член равен 5, и решите его.
a=-3: c=5. b =0;
-3x²+5=0;
-3x²=-5;
x²=5/3;
x=±√(5/3).
***
4. Запишите неполное квадратное уравнение, у которого первый коэффициент равен 5, второй коэффициент равен 7, и решите его.
a=5; b =7 c=0.
5x²+7x=0;
x(5x+7)=0;
Произведение равно нулю только тогда хотя бы один из множителей равен нулю:
x1=0;
---
5x+7=0;
5x=-7;
x=-7/5;
x2= - 1 2/5.
***
5. Решите уравнения:
1) х² = 6x;
x²-6x=0;
x(x-6)=0;
x1=0;
x-6=0;
x2=6.
***
2) х² + 7x - 3 = 7х +6; (+7х слева и +7х справа в сумме дают 0);
x²=9;
x1,2=±3.
***
3) 3х² + 9 = 12х +9; (+9 слева и +9 справа от знака равенства взаимно уничтожаются, так как в сумме дают 0);
3x²-12x=0;
3x(x-4)=0;
3x=0;
x1=0;
---
x-4=0;
x=4.
Данный пример- это неравенство с модулем. Задание ( любое) с модулем решается одинаково: надо снять знак модуля, получить примитивные неравенства и решать их.
Решить неравенство- это найти значения переменной, обращающие данное неравенство в верное числовое неравенство.
Простой пример: 2х ≥10, разделим обе части неравенства на 2, получим равносильное неравенство(имеющее то же решение, что и исходное), получим х ≥ 5(это алгебраическая форма решения.)
Можно на числовой прямой :-∞ 5 +∞
Можно записать этот числовой промежуток:[5; +∞)
Все эти 3 записи равноправные.
А теперь твой пример.
Чтобы снять знак модуля, надо помнить, что |x| = x при х ≥0 и
|x| = -x при х < 0
Начали?
1) ищем "нули" подмодульных выражений:
2х-5 = 0 4-х = 0
х=2,5 х = 4
Эти 2 числа разбивают числовую прямую на 3 промежутка. На каждом промежутке наше неравенство будет иметь свой вид.
-∞ 2,5 4 +∞
- + + это знаки (2х -5)
+ + - это знаки (4-х)
теперь "сочиняем" на каждом промежутке неравенство без модулей:
а) (-∞; 2,5]
-(2x-5) +4-x ≤x +1
-2x +5 +4 -x ≤ x +1
-4x ≤-8
x≥ 2 Вывод: [2;2,5]
б) (2.5;4]
2x-5 +4 -x ≤ x +1
2x ≤ 2
x ≤ 1 Вывод : несовместны эти 2 записи
в)(4; +∞)
2х - 5 -(4 -х) ≤ х +1
2х -5 -4 +х ≤ х +1
2х ≤10
х ≤ 5 Вывод: х∈(4;5]