9. Розв'яжи задачу. x км, а кожної наступної години проходив на 0,5 КМ менше, ніж по- Турист перебував у дорозі 4 год. За першу годину він пройшов передньої. Знайди шлях, що пройшов турист: б) за третю годину; а) за перші дві години; в) за останні три години; г) за весь час руху.
lim((2x²/x²+15x/x²+25/x²)/(x²/x²+15x/x²+50/x²))= x->∞ =lim((2+15/x+25/x²)/(1+15/x+50/x²)=2/1=2 x->∞ величинами 15/x, 25/x², 50/x² можно пренебречь, т.к при x->∞ их значение ->0. они бесконечно малы
- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)
x->5
lim((2x²+15x+25)/(x²+15x+50))=(2*(-5)²+15*(-5)+25)/((-5)²+15*(-5)+50)=0/0
x->-5
1. 2x²+15x+25=2*(x+5)*(x+2,5)
2x²+15x+25=0. x₁=-5, x₂=-2,5
2. x²+15+50=(x+50*(x+10)
x²+15x+50=0
x₁=-5, x₂=-10
lim((2x²+15x+25)/(x²+15x+50))=lim((2*(x+5)*(x+2,5)))/((x+5)*(x+10))=
x=->-5 x->-5
=lim(2*(x+2,5)/(x+10))=2*(-5+2,5)/(-5+10)=-5/5=-1
x->-5
lim((2x²+15x+25)/(x²+15x+50))=∞/∞
x->∞
lim((2x²/x²+15x/x²+25/x²)/(x²/x²+15x/x²+50/x²))=
x->∞
=lim((2+15/x+25/x²)/(1+15/x+50/x²)=2/1=2
x->∞
величинами 15/x, 25/x², 50/x² можно пренебречь, т.к при x->∞ их значение ->0. они бесконечно малы
Сначала находим вершину. Пусть А(m;n) - вершина параболы =>
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
значение у) на промежутке (-∞;1];
убывает (большему значению х соответствует меньшее
значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)