Прямоугольник — это четырёхугольник, у которого четыре прямых угла. Размеры прямоугольника задаются длиной его сторон, обозначаемых обычно a и b. Свойства прямоугольника : -противолежащие стороны равны и параллельны друг другу; -диагонали равны и в точке пересечения делятся пополам; -сумма квадратов диагоналей равна сумме квадратов всех (четырех) сторон. Периметр P прямоугольника равен удвоенной сумме сторон, прилежащих к одному углу P = 2(a + b). Длина диагонали d прямоугольника вычисляется по теореме Пифагора: d = √(a² + b²) х*х+γ*γ=10*10 х²+γ²=100 2х+2γ=28 х+γ=14 х=14-γ (14-γ)²+γ²=100 196-28γ+γ²+γ²=100 2γ²-28γ+96=0 γ=8 х=14-8=6
В прямоугольнике АВСД все углы равны 90 градусов, пусть сторона АВ=СД=а, ВС=АД=в. Периметр равен Р=2(а+в)=28Диагональ АС=10, а АСД-прямоугольный треугольник, где а^2+в^2=10^2Получаем систему уравнений2(а+в)=28а^2+в^2=100, из первого уравнения получима+в=14а=14-в, подставим а во второе уравнение(14-в)^2+в^2=100196-28в+в^2+в^2=1002в^2-28в+96=0, сократим на 2в^2-14в+48=0найдем дискрим. Д=196-192=4, корень из Д=2в1=(14+2)/2=16/2=8в2=(14-2)/2=12/2=6если в=8, то а=14-8=6если в=6, то а=14-6=8стороны пямоугольника равны 6 и 8