Левая часть выражения - квадратичная функция, графиком которой является парабола с ветвями, направленными вверх (коэффициент перед х² равен 1, положительный).
Неравенство не будет иметь решений, если парабола не будет пересекать ось Ох, т.е. квадратный трехчлен не будет иметь корней. А он не имеет корней, если дискриминант отрицательный.
Поэтому составим выражение для дискриминанта и решим неравенство D < 0.
б). (в знаменателе выносим "y" и сокращаем с "y" в числителе)
ответ:
в). (раскрываем числитель по формуле разности квадратов , в знаменателе выносим "3")
ответ:
Задание №2
а). (одинаковый знаменатель, значит можно складывать)
ответ:
б). (знаменатели разные, чтобы сложить приводим к общему знаменателю. Первую дробь умножаем на 4, вторую умножаем на 5, после чего складываем)
ответ:
в). (принцип тот же. "а" есть и там, и там в знаменателе, значит первую дробь умножаем на 3, вторую умножаем на 2, чтобы получить общий знаменатель, после чего вычитаем)
ответ:
г). (знаменатель одинаковый - складываем)
ответ: 2
Задание №3
а). (умножаем первую дробь на a, а вторую умножаем на 2, после чего вычитаем дроби)
ответ:
б). (первую дробь умножаем на знаменатель второй дроби, а вторую дробь умножаем на знаменатель первой дроби, после чего вычитаем)
(ещё можно свернуть по формуле разности квадратов )
ответ:
в). (вынесем "b" в знаменателе второй дроби за скобку и умножим первую дробь на "b", после чего вычитаем)
ответ:
Задание №4
(приведем к общему знаменателю умножив на "2y", после чего сложим)
(теперь подставляем x = -8 и y = 0,1. Десятичное число 0,2 = дроби . Когда получилась трёхэтажная дробь, то знаменатель дроби в знаменателе переносится в числитель и умножается на числитель общей дроби, а знаменатель становится числитель дроби в знаменателе)
ответ: -40
Задание №5
(знаменатель средней дроби раскроем по формуле разности квадратов .
Первую дробь умножим на "х" и на "x+4", среднюю дробь умножим на "х", а третью дробь умножим на "x+4" и на "x-4", после чего посчитаем)
ответ: а ∈ (1 ; 3)
Объяснение:
x² + (2a + 4)x + 8a + 1 ≤ 0
Левая часть выражения - квадратичная функция, графиком которой является парабола с ветвями, направленными вверх (коэффициент перед х² равен 1, положительный).
Неравенство не будет иметь решений, если парабола не будет пересекать ось Ох, т.е. квадратный трехчлен не будет иметь корней. А он не имеет корней, если дискриминант отрицательный.
Поэтому составим выражение для дискриминанта и решим неравенство D < 0.
D = (2a + 4)² - 4 · (8a + 1) = 4a² + 16a + 16 - 32a - 4 = 4a² - 16a + 12
4a² - 16a + 12 < 0
a² - 4a + 3 < 0
Решаем методом интервалов:
Найдем нули:
a² - 4a + 3 = 0
D/4 = 4 - 3 = 1
a₁ = 2 - 1 = 1
a₂ = 2 + 1 = 3
Отметим точки на координатной прямой (см. рисунок).
Решение неравенства а ∈ (1 ; 3).
Задание №1
а). (сокращаем на "13y")
ответ:
б). (в знаменателе выносим "y" и сокращаем с "y" в числителе)
ответ:
в). (раскрываем числитель по формуле разности квадратов , в знаменателе выносим "3")
ответ:
Задание №2
а). (одинаковый знаменатель, значит можно складывать)
ответ:
б). (знаменатели разные, чтобы сложить приводим к общему знаменателю. Первую дробь умножаем на 4, вторую умножаем на 5, после чего складываем)
ответ:
в). (принцип тот же. "а" есть и там, и там в знаменателе, значит первую дробь умножаем на 3, вторую умножаем на 2, чтобы получить общий знаменатель, после чего вычитаем)
ответ:
г). (знаменатель одинаковый - складываем)
ответ: 2
Задание №3
а). (умножаем первую дробь на a, а вторую умножаем на 2, после чего вычитаем дроби)
ответ:
б). (первую дробь умножаем на знаменатель второй дроби, а вторую дробь умножаем на знаменатель первой дроби, после чего вычитаем)
(ещё можно свернуть по формуле разности квадратов )
ответ:
в). (вынесем "b" в знаменателе второй дроби за скобку и умножим первую дробь на "b", после чего вычитаем)
ответ:
Задание №4
(приведем к общему знаменателю умножив на "2y", после чего сложим)
(теперь подставляем x = -8 и y = 0,1. Десятичное число 0,2 = дроби . Когда получилась трёхэтажная дробь, то знаменатель дроби в знаменателе переносится в числитель и умножается на числитель общей дроби, а знаменатель становится числитель дроби в знаменателе)
ответ: -40
Задание №5
(знаменатель средней дроби раскроем по формуле разности квадратов .
Первую дробь умножим на "х" и на "x+4", среднюю дробь умножим на "х", а третью дробь умножим на "x+4" и на "x-4", после чего посчитаем)
ответ: