1)f(x)=(x+1)³(x-2) D(f)∈(-∞;∞) f(-x)=(-x+1)³(-x-2) ни четная ни нечетная x=0⇒ f(x)=1*(-2)=-2 f(x)=0 ⇒ (x+1)³(x-2)=0⇒x=-1 U x=2 (0;-2) , (-1;0), (2;0) точки пересечения с осями f`(x)=3(x+1)²(x-2)+(x+1)³=(x+1)²(3x-6+x+1)=(x+1)²(4x-5)=0 x=-1 U x=1,25 критические точки + _ +
возр -1 убыв 1,25 возр max min ymax=(-1+1)³(-1-2)=0 ymin=(1,25+1)³(1,25-2)=-2187/256=-8 139/256≈-8,5 2)f(x)=(x²+5)/(2-x) D(x)∈(-∞;2) U (2;∞) f(-x)=(x²+5)/(2+x) ни четная ни нечетная x=0⇒f(x)=2,5 f(x)=0⇒(x²+5)/(2-x)=0 x не сущ f`(x)=[2x(2-x)+(x²+5)]/(2-x)²=(4x-2x²+x²+5)/(2-x)²=(-x²+4x+5)/(2-x)²=0 x²-4x-5=0 x1+x2=4 U x1*x2=-5⇒x1=-1 U x2=5 x=-1 x=5 x=2 критические точки _ + + _
убыв -1 возр 2 возр 5 убыв min max ymin=(1+5)/(2+1)=6/3=2 ymax=(25+5)/(2-5)=-30/3=-10
task/29646731 Чему равно наибольшее значение функции y=x²-3x+2 на отрезке [-5;5] ?
y= x²-3x+2 ⇔ y = (x - 3/2)² - 1/4 ⇒ min y = - 1/4 , при x = 3 /2 ∈ [-5;5]
График парабола ; A(0;2) ; B(1 ;0) ; C(2 ; 0) ; G(1,5 ; -0;25) точки графика
Функция убывает , если x ∈ [-5 ; 3/2] , возрастает , если x ∈ [ 3/2 ; 5] .
y( -5) =(-5)² - 3*(-5) +2 = 42. y( 5) =5² - 3*5 +2 = 12 .
ответ: 42.
ИЛИ
* Непрерывная на отрезке функция достигает максимума и минимума * *
y ' = (x²-3x+2) ' = (x²) '- (3x) '+(2) ' =2x -3*(x)' +0 =2x -3 . y' =0 ⇒ x =3/2
y ' " - " " +"
1,5 (критическая точка x=1,5 →точка минимума)
y ↓ min ↑
y( -5) =(-5)²- 3*(-5) +2 = 42. y (1,5)=1,5²-3*1,5 +2= -0,25 ; y( 5) =5²- 3*5 +2 = 12 .
у min = y(1,5) = - 0,25 ; у max = y(-5) = 42.
D(f)∈(-∞;∞)
f(-x)=(-x+1)³(-x-2) ни четная ни нечетная
x=0⇒ f(x)=1*(-2)=-2
f(x)=0 ⇒ (x+1)³(x-2)=0⇒x=-1 U x=2
(0;-2) , (-1;0), (2;0) точки пересечения с осями
f`(x)=3(x+1)²(x-2)+(x+1)³=(x+1)²(3x-6+x+1)=(x+1)²(4x-5)=0
x=-1 U x=1,25 критические точки
+ _ +
возр -1 убыв 1,25 возр
max min
ymax=(-1+1)³(-1-2)=0
ymin=(1,25+1)³(1,25-2)=-2187/256=-8 139/256≈-8,5
2)f(x)=(x²+5)/(2-x)
D(x)∈(-∞;2) U (2;∞)
f(-x)=(x²+5)/(2+x) ни четная ни нечетная
x=0⇒f(x)=2,5
f(x)=0⇒(x²+5)/(2-x)=0 x не сущ
f`(x)=[2x(2-x)+(x²+5)]/(2-x)²=(4x-2x²+x²+5)/(2-x)²=(-x²+4x+5)/(2-x)²=0
x²-4x-5=0
x1+x2=4 U x1*x2=-5⇒x1=-1 U x2=5
x=-1 x=5 x=2 критические точки
_ + + _
убыв -1 возр 2 возр 5 убыв
min max
ymin=(1+5)/(2+1)=6/3=2
ymax=(25+5)/(2-5)=-30/3=-10