Последовательные натуральные числа образуют арифметическую прогрессию. Ее сумма: Sn = n(a1 + an)/2, где а1 - первый член прогрессии, аn - последний член. По условию а1=1, а поскольку все следующие числа представляют собой последовательно идущие числа, то последний член прогрессии совпадает с его номером n. Сумма должна быть меньше 528. Получается неравенство: 528 > n(1+n)/2 n(1+n) < 1056 n^2 + n - 1056 <0 Найдем корни: Дискриминант: Корень из (1+4•1056) = = корень из (1+4224) = = корень из 4225 = 65 n1 = (-1+65)/2 = 64/2 = 32 n2 = (-1-65)/2 = -66/2 = -33 не подходит, поскольку корень не является натуральным числом.
(n-32)(n+32) <0 n-32<0 n+32>0
n<32 n>-32 - не подходит, поскольку n >0
1 < n < 32 Это значит, что n= 31.
ответ: 31
Проверка: Если бы n=32, то: (1+32)•32/2 = 33•32/2 = 33•16 = 528, значит сумма последовательных чисел от 1 до 32 была бы равна 528.
х³-5х²-2х+24=0 Корни уравнения надо искать среди делителей свободного слагаемого. Делители числа 24: 1;2;3;4;6;12;24 -1;-2;-3;-4;-6;-12;-24 Проверкой убеждаемся, что х=2 - корень уравнения В самом деле. (-2)³-5·(-2)²-2·(-2)+24=0 -8-20+4+24=0 -28+28=0 - верно. Значит, левая часть раскладывается на множители, один из которых (х-(-2))=х+2 Делим -х³-5х²-2х+24 | x+2 x³+2x² x²-7x+12
_-7x²-2x+24 -7x²-14x
_12x+24 12x+24
0
х³-5х²-2х+24=0 (x+2)(x²-7x+12)=0 x+2=0 или х²-7х+12=0 х=-2 х=(7-1)/2=3 или х=(7+1)/2=4 О т в е т. -2; 3; 4.
Ее сумма:
Sn = n(a1 + an)/2,
где а1 - первый член прогрессии, аn - последний член.
По условию а1=1, а поскольку все следующие числа представляют собой последовательно идущие числа, то последний член прогрессии совпадает с его номером n. Сумма должна быть меньше 528.
Получается неравенство:
528 > n(1+n)/2
n(1+n) < 1056
n^2 + n - 1056 <0
Найдем корни:
Дискриминант:
Корень из (1+4•1056) =
= корень из (1+4224) =
= корень из 4225 = 65
n1 = (-1+65)/2 = 64/2 = 32
n2 = (-1-65)/2 = -66/2 = -33 не подходит, поскольку корень не является натуральным числом.
(n-32)(n+32) <0
n-32<0
n+32>0
n<32
n>-32 - не подходит, поскольку n >0
1 < n < 32
Это значит, что n= 31.
ответ: 31
Проверка:
Если бы n=32, то:
(1+32)•32/2 = 33•32/2 = 33•16 = 528, значит сумма последовательных чисел от 1 до 32 была бы равна 528.
Корни уравнения надо искать среди делителей свободного слагаемого.
Делители числа 24:
1;2;3;4;6;12;24
-1;-2;-3;-4;-6;-12;-24
Проверкой убеждаемся, что х=2 - корень уравнения
В самом деле.
(-2)³-5·(-2)²-2·(-2)+24=0
-8-20+4+24=0
-28+28=0 - верно.
Значит, левая часть раскладывается на множители, один из которых (х-(-2))=х+2
Делим
-х³-5х²-2х+24 | x+2
x³+2x² x²-7x+12
_-7x²-2x+24
-7x²-14x
_12x+24
12x+24
0
х³-5х²-2х+24=0
(x+2)(x²-7x+12)=0
x+2=0 или х²-7х+12=0
х=-2 х=(7-1)/2=3 или х=(7+1)/2=4
О т в е т. -2; 3; 4.