а 1. Решите уравнение:
а) 1
5
• х = 17; в) 7х – 6,4 = 4х + 2,6;
б) 7(х –4)- 24,5 = 0; г) 5х – (9х – 7) = 39.
2. В двух погребах хранится картофель, причем в первом погребе картофеля
в 5 раза больше, чем во втором. После того как из первого погреба увезли 124
т картофеля, а во второй привезли 64 т, в обоих погребах картофеля стало
поровну.Сколько всего тонн картофеля было в двух погребах первоначально?
3. Решите уравнения: а) 9х – (х + 4) = 4(2х – 1),
б) 3(х+5)-2(х-4)=х-9.
4.Из села в город выехал автобус со скоростью 65 км/ч. Через 2 ч из города в
село выехал автомобиль со скоростью 80 км/ч. Найди время, которое был в
пути каждый из них до момента встречи, если расстояние между городом и
селом равно 420 км
обозначим скорость мотоцикла m, а скорость автомобиля а км/мин.
длина трассы 40 км.
за 20 мин мотоцикл проехал 20m км. в этот момент выехал автомобиль.
через 30 мин автомобиль догнал мотоцикл, проехав 30a км.
мотоцикл к этому моменту проехал 20m
+ 30m = 50m км.
30a = 50m; a = 5m/3
еще через 40 минут мотоцикл проехал 40m км, а автомобиль на 1 круг больше, то есть 40a км.
40a = 40m + 40
a = m + 1 = 5m/3
m + 1 = m + 2m/3
2m/3 = 1
m = 3/2 = 1,5 км/мин =
1,5*60 км/ч = 90 км/ч - скорость мотоцикла.
a = 5m/3 = 5*90/3 = 5*30 = 150 км/ч - скорость автомобиля.
ОДЗ: 7-3х≥0
Возводим обе части неравенства в квадрат:
7-3х> 25;
Система:
7-3х≥0;
7-3х >25
равносильна неравенству
7-3х>25;
-3x> 25-7;
-3x > 18;
x< -6.
ответ. (-∞;-6).
2. √(2x+1)>-3
неравенство верно при любом х из ОДЗ.
ОДЗ: 2х+1 ≥ 0
х ≥ -0,5
О т в е т. [-0,5;+∞)
3. √(3+2x)>=√(x+1)
ОДЗ:
3+2х≥0 ⇒ x ≥ -1,5
х+1≥0 ⇒ x ≥-1
ОДЗ: х≥-1
Возводим неравенство в квадрат.
3+2х ≥ х+1;
х ≥ -2
ответ с учетом ОДЗ
х≥ -1
О т в е т. [-1;+∞)
4. √(8-2x)=<√(6x+15)
ОДЗ:
8-2х ≥0 ⇒ х ≤ 4
6х+15≥0 ⇒ х≥-2,5
ОДЗ: - 2,5 ≤ х ≤ 4.
Возводим неравенство в квадрат:
8 - 2х ≤ 6х + 15;
-2х - 6х ≤ 15 - 8
- 8х ≤ 7
х ≥ -7/8
С учетом ОДЗ:
О т в е т. [-7/8;4]