ЗпунктуA в пункт B вийшов пішохід. Через 1 годину на зустріч йому з пункту B виїхав велисопедист. Відстань між пунктами 51 км. Відомо, що швидкість велосиредиста на 13 км/год більша за швидкість пішохода. Знайдіть швидкість велосипедиста і швидкість пішохода якщо до зустрічі пішохід був у дорозі 3 год.
Пусть знаменатель первой дроби x, тогда числитель x + 7 и дробь принимает вид (x + 7) / x Если числитель первой дроби увеличить на 2 => x + 7 + 2 а знаменатель умножить на 2 => 2*x то получится вторая дробь (x + 7 + 2) / 2*x значение которой будет на 1 меньше значения первой дроби (x + 7) / x от большего отнимаем меньшее и пишем уравнение (x + 7) / x - (x + 9) / 2*x = 1 умножаем обе части на 2x 2*(x + 7) - x - 9 = 2x неизвестные вправо, известные влево 2x - 2x + x = 14 - 9 x = 5 первая дробь (x + 7) / x => 12/5
5 (км/час) скорость пешехода.
18 (км/час) скорость велосипедиста.
Объяснение:
ЗпунктуA в пункт B вийшов пішохід. Через 1 годину на зустріч йому з пункту B виїхав велисопедист. Відстань між пунктами 51 км. Відомо, що швидкість велосиредиста на 13 км/год більша за швидкість пішохода. Знайдіть швидкість велосипедиста і швидкість пішохода якщо до зустрічі пішохід був у дорозі 3 год.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость пешехода.
х+13 - скорость велосипедиста.
3 часа -время пешехода до встречи.
2 часа - время велосипедиста до встречи.
Расстояние между пунктами А и В 51 км, уравнение:
х*3+(х+13)*2=51
3х+2х+26=51
5х=51-26
5х=25
х=5 (км/час) скорость пешехода.
5+13=18 (км/час) скорость велосипедиста.
Если числитель первой дроби увеличить на 2 => x + 7 + 2
а знаменатель умножить на 2 => 2*x
то получится вторая дробь (x + 7 + 2) / 2*x
значение которой будет на 1 меньше значения первой дроби (x + 7) / x
от большего отнимаем меньшее и пишем уравнение
(x + 7) / x - (x + 9) / 2*x = 1 умножаем обе части на 2x
2*(x + 7) - x - 9 = 2x неизвестные вправо, известные влево
2x - 2x + x = 14 - 9
x = 5
первая дробь (x + 7) / x => 12/5