√(a-b) / b
Объяснение:
Вторую скобку переводим в дробь:
1 + √((a+b)/(a-b)) = 1 + √(a+b)/√(a-b) = [√(a-b) + √(a+b)] / √(a-b)
Дальше, мы делим на эту дробь, то есть умножаем на перевёрнутую.
[2√a + √(a+b) - √(a-b)]*√(a-b)
(√a - √(a-b))*(√a + √(a+b))*(√(a-b) + √(a+b))
И тут самое главное: оставить числитель и разложить знаменатель:
[a - √a√(a-b) + √a√(a+b) - √(a-b)√(a+b)]*(√(a-b) + √(a+b)) =
= a√(a-b) - (a-b)√a + √a√(a^2-b^2) - (a-b)√(a+b) +
+ a√(a+b) - √a√(a^2-b^2) + (a+b)√a - (a+b)√(a-b) =
= a√(a-b) - a√a + b√a - a√(a+b) + b√(a+b) + a√(a+b) + a√a + b√a - a√(a-b) - b√(a-b) =
= 2b√a + b√(a+b) - b√(a-b) = b*(2√a + √(a+b) - √(a-b)
Получаем такую дробь:
(2√a + √(a+b) - √(a-b))*√(a-b)
b*(2√a + √(a+b) - √(a-b))
Две большие скобки сокращаются, и остаётся:
р - 1/2р = 3/8 + 1/4 0,8 - 3,2 = у + у
1/2р = 5/8 2у = - 2,4
р = 5/8 : 1/2 у = - 2,4 : 2
р = 5/8 * 2/1 у = - 1,2
р = 10/8 = 1 2/8
х = 1 1/4
2/7х = 1/2 2х - 0,7х = 0
х = 1/2 : 2/7 1,3х = 0
х = 1/2 * 7/2 х = 0 : 1,3
х = 7/4 х = 0
х = 1 3/4
√(a-b) / b
Объяснение:
Вторую скобку переводим в дробь:
1 + √((a+b)/(a-b)) = 1 + √(a+b)/√(a-b) = [√(a-b) + √(a+b)] / √(a-b)
Дальше, мы делим на эту дробь, то есть умножаем на перевёрнутую.
[2√a + √(a+b) - √(a-b)]*√(a-b)
(√a - √(a-b))*(√a + √(a+b))*(√(a-b) + √(a+b))
И тут самое главное: оставить числитель и разложить знаменатель:
[a - √a√(a-b) + √a√(a+b) - √(a-b)√(a+b)]*(√(a-b) + √(a+b)) =
= a√(a-b) - (a-b)√a + √a√(a^2-b^2) - (a-b)√(a+b) +
+ a√(a+b) - √a√(a^2-b^2) + (a+b)√a - (a+b)√(a-b) =
= a√(a-b) - a√a + b√a - a√(a+b) + b√(a+b) + a√(a+b) + a√a + b√a - a√(a-b) - b√(a-b) =
= 2b√a + b√(a+b) - b√(a-b) = b*(2√a + √(a+b) - √(a-b)
Получаем такую дробь:
(2√a + √(a+b) - √(a-b))*√(a-b)
b*(2√a + √(a+b) - √(a-b))
Две большие скобки сокращаются, и остаётся:
√(a-b) / b