Двое снегоуборщиков очищали территорию Сибирского федерального университета от снега. После того как первый проработал 3 часа, а второй – 7 часов, оказалось, что они выполнили 40% всей работы. Проработав совместно еще 5 часов, они осознали, что им осталось выполнить еще 635 всей работы. За сколько часов, работая отдельно, каждый из них мог бы очистить эту территорию?
В решении.
Объяснение:
Двое снегоуборщиков очищали территорию Сибирского федерального университета от снега. После того как первый проработал 3 часа, а второй – 7 часов, оказалось, что они выполнили 40% всей работы. Проработав совместно еще 5 часов, они осознали, что им осталось выполнить еще 635 всей работы. За сколько часов, работая отдельно, каждый из них мог бы очистить эту территорию?
1 - вся территория (вся работа).
х - производительность 1 снегоуборщика.
у - производительность 2 снегоуборщика.
По условию задачи система уравнений:
3*х + 7*у = 0,4
(х + у)*5 = 1 - 0,4 - 6/35
Вычислить: 1 - 0,4 - 6/35 = 0,6 - 6/35 = 3/5 - 6/35 = 15/35 = 3/7.
(х + у)*5 = 3/7
Умножить уравнение на 7, чтобы избавиться от дробного выражения:
35*(х + у) = 3
Система уравнений к решению:
3х + 7у = 0,4
35х + 35у = 3
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = (0,4 - 7у)/3
35*(0,4 - 7у)/3 + 35у = 3
Умножить уравнение на 3, чтобы избавиться от дробного выражения:
35*(0,4 - 7у) + 105у = 9
14 - 245у + 105у = 9
- 140у = 9 - 14
-140у = -5
у = -5/-140
у = 1/28 - производительность 2 снегоуборщика.
х = (0,4 - 7у)/3
х = (0,4 - (7*1/28))/3
х = (0,4 - 0,25)/3
х = 0,15/3
х = 0,05 = 5/100 = 1/20 - производительность 1 снегоуборщика.
За сколько часов, работая отдельно, каждый из них мог бы очистить эту территорию?
1 : 1/28 = 28 (часов) - 2 снегоуборщик.
1 : 1/20 = 20 (часов) - 1 снегоуборщик.
Проверка:
3 * 1/20 + 7 * 1/28 = 3/20 + 1/4 = 8/20 = 0,4, верно.
5*(1/20 + 1/28) = 5 * 3/35 = 3/7, верно.
Почему я так смело возводил в квадрат? Если заметить ,то правая часть всегда неотрицательная ,а значит могу возводить и не наносить ограничения
Я привёл данную функцию к двум простейшим ,разберём их
Первая функция!
Мы знаем как выглядит модуль |2x+2| ,но мы его подняли ,а значит его вершина будет иметь координаты (-1;3)
Нам нужно одно решение с прямой x-a
Единственное решение может иметь только тогда ,когда прямая x-a касается вершины,то есть ,подставим вместо x=-1
Получаем:-1-a=3⇔-a=4⇔a=-4
Рассмотрим вторую функцию!
Если заметить ,то можно понять ,что вторая функция симметрична первой ,а значит её вершина будет иметь (-1;-3)
Делаем всё тоже самое ,подставляем x=-1
-1-a=-3⇔-a=-2⇔a=2
При а={-4;2} - будет единственное решение