1. Здесь в условии опечатка, скорее всего в точке x₀ = -1.
Прямая y=x-2 касается графика функции y=f(x) в точке x₀ = -1, то эта точка является общей для обеих функций, тогда f(-1) = -1-2=-3
ответ: -3.
2. Производная функции
ответ: 16.
3.
4. Производная функции:
Используем геометрический смысл производной: f'(x₀) = tgα
ответ: 19.
5.
6.
Производная функции: . Производная функции в точке 1, равна
7. Производная функции: f'(x) = 1/2√x, ее значение в точке х=1 равна 1/2. Тогда касательная: y = f'(x0)(x-x0) + f(x0) = 1/2 * (x-1) + 1 = x/2 + 1/2
y(31) = 31/2 + 1/2 = 32/2 = 16
8.
Объяснение:
1) f(x)=2e^x+3x² f'(x)=2e^x+6x
2) f(x)= x sinx. f'(x)= sinx+xcosx
3) у = (3х – 1)(2 – х) y'=3(2 – х)+(3х – 1)×(-1)=6-3x-3x+1=-6x+7
4) y=9x²-cosx y'= 18x+sinx
5) y=e^x-x^7 y'= e^x-7x^6
7) f '(1), f(x)=3x2-2x+1. f'(x)=6x-2; f'(1)=6-2=4
8) у = х²(3х^5 – 2) ; х0 = – 1. у' =(3x^7-2x²)'=21x^6-4x
y'(-1)=21+4=25
9) f '( ), f(x)=(2x-1)cosx=2cosx-(2x-1)sinx
10) f '(1), f(x)=(3-x²)(x²+6)= -2x(x²+6)+2x(3-x²) = -4x³ -6x
11) f '(1), f(x)=(x^4-3)(x²+2), f'(x)=3x³ (x²+2)+2x(x^4-3)=5x^5+6x³-6x
1. Здесь в условии опечатка, скорее всего в точке x₀ = -1.
Прямая y=x-2 касается графика функции y=f(x) в точке x₀ = -1, то эта точка является общей для обеих функций, тогда f(-1) = -1-2=-3
ответ: -3.
2. Производная функции
ответ: 16.
3.
4. Производная функции:
Используем геометрический смысл производной: f'(x₀) = tgα
ответ: 19.
5.
6.
Производная функции: . Производная функции в точке 1, равна
7. Производная функции: f'(x) = 1/2√x, ее значение в точке х=1 равна 1/2. Тогда касательная: y = f'(x0)(x-x0) + f(x0) = 1/2 * (x-1) + 1 = x/2 + 1/2
y(31) = 31/2 + 1/2 = 32/2 = 16
ответ: 16.
8.
Объяснение:
1) f(x)=2e^x+3x² f'(x)=2e^x+6x
2) f(x)= x sinx. f'(x)= sinx+xcosx
3) у = (3х – 1)(2 – х) y'=3(2 – х)+(3х – 1)×(-1)=6-3x-3x+1=-6x+7
4) y=9x²-cosx y'= 18x+sinx
5) y=e^x-x^7 y'= e^x-7x^6
7) f '(1), f(x)=3x2-2x+1. f'(x)=6x-2; f'(1)=6-2=4
8) у = х²(3х^5 – 2) ; х0 = – 1. у' =(3x^7-2x²)'=21x^6-4x
y'(-1)=21+4=25
9) f '( ), f(x)=(2x-1)cosx=2cosx-(2x-1)sinx
10) f '(1), f(x)=(3-x²)(x²+6)= -2x(x²+6)+2x(3-x²) = -4x³ -6x
11) f '(1), f(x)=(x^4-3)(x²+2), f'(x)=3x³ (x²+2)+2x(x^4-3)=5x^5+6x³-6x