A) 5х + 2х = 0; 3х - 6х = 0.
22 b) 2х - 4 = 0; 5х
+ 3 = 0. c) 12х2 = 0; -5х2 = 0.
ІІ топ
22
a) х +2х=0; 3х -5х=0.
22 b) 3х - 27 = 0; 2х
c) -2х2 = 0; 8х2
ІІІ топ
+ 5 = 0. = 0.
22
a) 3х + 9х = 0; х - 7х = 0.
22
a) 2х - 8= 0; х + 15 = 0.
d) 6х2 = 0; 3х2 = 0.
ответ: 21 км/час.
Объяснение:
Катер по течению за 6 ч. проплыл такое же расстояние, какое проплывает за 8 ч. против течения. Скорость течения реки равна 3 км/ч. Вычислили скорость катера в стоячей воде.
Решение.
х км/час - скорость катера в стоячей воде. Тогда
х+3 км/час - скорость катера по течению и
х-3 км/час - скорость катера против течения.
S=vt. s1=6(x+3)км катер по течению
катер против течения.
По условию s1=s2;
6(x+3)=8(x-3);
6x+18=8x-24;
6x-8x=-24-18;
-2x= -42;
x=21 км/час - скорость катера в стоячей воде.
x² + (8a – a²)x – a⁴ = 0
Для начала убедимся, что уравнение вообще имеет корни:
D = (8a – a²)² + 4a⁴ -- сумма квадратов не может быть отрицательной, поэтому точно есть хотя бы один корень
По теореме Виета сумма корней исходного уравнения равна –(8a – a²) = a² – 8a. Это уравнение параболы, ветви направлены вверх, корни a₁ = 0, a₂ = 8. Наименьшее значение выражения достигается в вершине параболы при a = (a₁ + a₂) / 2 = 4 и составляет a² – 8a = 4² – 8·4 = –16.
Наименьшее значение суммы корней уравнения равно –16 и достигается при a = 4.