Шаг 1: Найдем значения функции на границах отрезка.
Для этого подставим значения 5 и 581 вместо x в выражение y = (1/3)x^(1/2) - 6x + 70.
y(5) = (1/3) * 5^(1/2) - 6 * 5 + 70 = (1/3) * √5 - 30 + 70 = (1/3) * √5 + 40,
y(581) = (1/3) * 581^(1/2) - 6 * 581 + 70 = (1/3) * √581 - 3486 + 70 = (1/3) * √581 - 3416.
Шаг 2: Найдем производную функции.
Для этого возьмем производную выражения y по x.
y' = (1/3) * (1/2)x^(-1/2) - 6.
Шаг 3: Найдем точки, в которых производная равна нулю или не существует.
Поставим уравнение производной равным нулю и решим его.
(1/3) * (1/2)x^(-1/2) - 6 = 0.
(1/2)x^(-1/2) = 18.
x^(-1/2) = 36.
1/√x = 36.
√x = 1/36.
x = (1/36)^2 = 1/1296.
Шаг 4: Найдем значения функции в найденных точках.
Подставим значение x = 1/1296 в выражение y = (1/3)x^(1/2) - 6x + 70.
y(1/1296) = (1/3) * (1/1296)^(1/2) - 6 * (1/1296) + 70 = (1/3) * (1/√(1296)) - (1/216) + 70 = (1/3) * (1/36) - (1/216) + 70 = (1/108) - (1/216) + 70 = (2/216) + 70 = 70.00926.
Шаг 5: Находим точки экстремума и значения функции в них, а также значения функции на границах отрезка.
Так как функция является непрерывной на отрезке [5; 581] и производная меняет знак отрицательный на положительный в точке x = 1/1296, эта точка будет точкой минимума функции.
Таким образом, наименьшее значение функции y = (1/3)x^(1/2) - 6x + 70 на отрезке [5; 581] равно 70.00926.
Вот таким образом мы решаем задачу о нахождении наименьшего значения функции на заданном отрезке.
Если 114, то не получается,а если 148, то получается!
Пусть х - собственная скорость катера (или скорость движения по озеру) , у - скорость течения реки
Составим систему уравнений:
4*(х+у) + 3х = 148 - первое уравнение (сложить расстояния, пройденные катером по реке и озеру)
5*(х-у) -2х = 50 - второе уравнение (это разница расстояний, пройденных катером против течения и по озеру за 2 часа)
Раскроем скобки
4х+4у+3х=148
5х-5у-2х=50
будет:
7х+4у=148
3х-5у=50
Из первого уравнения выразим х, и подставим во второе уравнение:
х = (148-4у) /7
3*((148-4у) /7) - 5у = 50
решаем второе уравнение:
(444-12у) /7 - 5у = 50
умножим все части на 7:
444-12у-35у=350
444-47у=350
47у=94
у=2 км/ч - скорость течения реки
х = (148 - 4*2)/7 = 20 км/ч - собственная скорость катера (или скорость в стоячей воде)
Объяснение:
Ну как то так
Шаг 1: Найдем значения функции на границах отрезка.
Для этого подставим значения 5 и 581 вместо x в выражение y = (1/3)x^(1/2) - 6x + 70.
y(5) = (1/3) * 5^(1/2) - 6 * 5 + 70 = (1/3) * √5 - 30 + 70 = (1/3) * √5 + 40,
y(581) = (1/3) * 581^(1/2) - 6 * 581 + 70 = (1/3) * √581 - 3486 + 70 = (1/3) * √581 - 3416.
Шаг 2: Найдем производную функции.
Для этого возьмем производную выражения y по x.
y' = (1/3) * (1/2)x^(-1/2) - 6.
Шаг 3: Найдем точки, в которых производная равна нулю или не существует.
Поставим уравнение производной равным нулю и решим его.
(1/3) * (1/2)x^(-1/2) - 6 = 0.
(1/2)x^(-1/2) = 18.
x^(-1/2) = 36.
1/√x = 36.
√x = 1/36.
x = (1/36)^2 = 1/1296.
Шаг 4: Найдем значения функции в найденных точках.
Подставим значение x = 1/1296 в выражение y = (1/3)x^(1/2) - 6x + 70.
y(1/1296) = (1/3) * (1/1296)^(1/2) - 6 * (1/1296) + 70 = (1/3) * (1/√(1296)) - (1/216) + 70 = (1/3) * (1/36) - (1/216) + 70 = (1/108) - (1/216) + 70 = (2/216) + 70 = 70.00926.
Шаг 5: Находим точки экстремума и значения функции в них, а также значения функции на границах отрезка.
Так как функция является непрерывной на отрезке [5; 581] и производная меняет знак отрицательный на положительный в точке x = 1/1296, эта точка будет точкой минимума функции.
Таким образом, наименьшее значение функции y = (1/3)x^(1/2) - 6x + 70 на отрезке [5; 581] равно 70.00926.
Вот таким образом мы решаем задачу о нахождении наименьшего значения функции на заданном отрезке.