Для начала напишем ОДЗ: х+1≠0 и х+2≠0, значит х≠-1 и х≠-2
данное уравнение может иметь два корня ОДИН корень уравнение имеет в следующих случаях: 1 случай а=-а 2а=0 а=0 2 случай один из корней числителя равен одному из корней знаменателя: х+а=х+1 а=1 3 случай х+а=х+2 а=2 4 случай х-а=х+1 а=-1 5 случай х-а=х+2 а=-2 при всех данных а уравнение имеет 1 корень. Отв:а=0; а=1; а=-1; а=2; а=-2
х+1≠0 и х+2≠0, значит
х≠-1 и х≠-2
данное уравнение может иметь два корня
ОДИН корень уравнение имеет в следующих случаях:
1 случай
а=-а
2а=0
а=0
2 случай
один из корней числителя равен одному из корней знаменателя:
х+а=х+1
а=1
3 случай
х+а=х+2
а=2
4 случай
х-а=х+1
а=-1
5 случай
х-а=х+2
а=-2
при всех данных а уравнение имеет 1 корень.
Отв:а=0; а=1; а=-1; а=2; а=-2
В этом можно убедиться:
1)пусть а=0, тогда
x²=0
x=0 -1 корень
2) пусть а=1, тогда
x-1=0
x=1 - 1 корень
3) пусть а=-1, тогда
x-1=0
x=1 - 1 корень
4) а=2
х-2=0
х=2 - 1 корень
5) а=-2
х-2=0
х=2 - 1 корень
2) {x+y=5
{x^3 +y^3=35
1.Из 1-го уравнения выразим х через у: х=5-у
2. Подставим во 2-е уравнение полученное выражение:
(5-у)^3+y^3 = 35
125 - 75y+15y^2-y^3+y^3=35
15y^2-75y+90=0
y^2-5y+6=0
Подберём корни по теореме обратной теореме Виета
у1=2, у2=3
3. Найдём х1 и х2
х1= 5-2=3 х2=5-3=2
(3;2) и (2;3)
3) {3x=y+1
{7^y-2x+2=7^y-4x+1+6
1. Выразим из 1-го у через х: у=3х-1
2. Подставим во 2-е предварительно упростив его
7^y-2x+2=7^y-4x+1+6,
7^y-2x-7^y+4x=-2+1+6
2х=5
х=2,5
3. Найдём у: у=3х-1=3*2,5-1=7,5-1=6,5
ответ. (2,5;6,5)