Заметим, что - это отношение , т.е. тангенс угла наклона касательной в точке .
Тогда совершенно очевидно, как решать подобного рода задачи:
анализируем только касательнуюнаходим точку, где касательная проходит через угол клеточкинаходим тангенс угла, образованного осью и касательной.
На примере задания №14:
смотрим на прямуювидим, что она проходит через точку находим тангенс (делим противолежащий катет на прилежащий, в данном случае - высоту на длину)ответ: 2
Для решения неравенства методом интервалов будем выполнять следующие шаги
1) найдем корни уравнения уравнения
(x+3)(x-4)(x-6)=0
произведение равно нуля когда любой из множителей равен нулю
х+3=0 или х-4=0 или х-6=0
тогда х= -3 или х= 4 или х=6
2) Нарисуем числовую ось и отметив полученные точки
-3 4 6
3) в каждом из полученных промежутков определим знак нашего выражения
при х< -3 проверим для точки х= -5
(-5+3)(-5-4)(-5-6)=(-)(-)(-) <0
при -3<x<4 проверим для точки х=0
(0+3)(0-4)(0-6)=(+)(-)(-)>0
при 4<x<6 проверим для точки х=5
(5+3)(5-4)(5-6)=(+)(+)(-)<0
при x>6 проверим для точки х=10
(10+3)(10-4)(10-6)= (+)(+)(+)>0
4) расставим полученные знаки над промежутками
--3+4-6__+
5) и теперь осталось выбрать промежутки где стоит знак "минус"
( по условию <0)
Запишем полученные промежутки (-∞; -3) ∪(4;6)
№13 -
№14 -
№15 -
Объяснение:
По определению производной:
Заметим, что - это отношение , т.е. тангенс угла наклона касательной в точке .
Тогда совершенно очевидно, как решать подобного рода задачи:
анализируем только касательнуюнаходим точку, где касательная проходит через угол клеточкинаходим тангенс угла, образованного осью и касательной.На примере задания №14:
смотрим на прямуювидим, что она проходит через точку находим тангенс (делим противолежащий катет на прилежащий, в данном случае - высоту на длину)ответ: 2