A) два примера уравнений линейной функции, графики которых параллельны графику функции у = 3х – 6. обоснуйте свой выбор. b) два примера уравнений линейной функции, графики которых пересекаются с графиком функции у = – 4х – 2. обоснуйте свой выбор. 2 подберите a, b, с, d так, чтобы графики функций: а) у = – 4х +8 и у = ах – 2 пересекались. б) у = – bх– 8 и у =2 –3x были параллельны. в) у = – 3х+4 и у =сx+d совпадали. в каждом случае выбор значений объясните.ну-ка? кто в асс?
х - цифра десятков
у - цифра единиц
ОДЗ: х > 0; у > 0
(10х+у) - данное число
По условию сумма цифр данного числа равна 13, получаем первое уравнение:
х+у = 13
По условию:
(10х+у)/(х-у)=28(ост. 1)
получаем второе уравнение:
10х+у = 28 · (х-у) + 1
Упростим второе уравнение:
10х+у - 28х + 28у = 1
- 18х + 29у = 1
Решаем систему:
{x + y = 13
{- 18х + 29у = 1
Первое уравнение умножим на 18 и получим:
{18x + 18y = 18 · 13
{- 18х + 29у = 1
Сложим:
18x + 18y - 18х + 29у = 18·13 + 1
47у = 234 + 1
47у = 235
у = 235 : 47
у = 5
Подставим в первое уравнение:
х + 5 = 13
х = 13 - 5
х = 8
х= 8 - цифра десятков
у = 5 - цифра единиц
10·8 + 5 = 85 - данное искомое число
ответ: 85
y = (x + 13)² * (e^x) - 15
Находим первую производную:
y` = (x + 13)² * (e^x) + (2x + 26) * (e^x) = (x + 13)*(x + 15) * (e^x)
Приравняем её к нулю:
(x + 13)*(x + 15) * (e^x) = 0
x₁ = - 13
x₂ = - 15
e^x > 0
Вычисляем значение функции:
f(-13) = - 15
f(- 15) = - 15 + 4/e¹⁵
fmin = - 15
fmax = - 15 + 4/e¹⁵
Используем достаточное условие экстремума функции для одной переменной.
y`` = (x + 13)² + 2*(2x + 26) * (e^x) + 2*(e^x) = (x² + 30x + 223) * (e^x)
Вычисляем:
y``(-15) = - 2/e¹⁵ < 0, значит эта точка - точка максимума
y``(-13) = 2/у¹³ > 0, значит эта точка - точка минимума