1) 11
2) 4
Объяснение:
1) 20 + 8х - х² > 0
- х²+8x+20 = 0
D = 64+80 = 144 =
x1 = x2 =
- -2 + 10 -
Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î
Нам подходит промежуток (-2; 10)
Определим целые числа в промежутке: -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Всего целых решений: 11
2) 4x² - 17x + 4 ≤ 0
4x² - 17x + 4 = 0
D = 289-64 = 225 =
+ - 4 +
Нам подходит промежуток [; 4]
Определим целые числа в промежутке: 1, 2, 3, 4
Всего целых решений: 4
Переведем все значения в градусы, чтобы было привычнее.
π=180°
/ - так обозначается черта дроби.
переведу число -0,5 в дробь, тоже для удобства = -1/2
sin(180°/4-a) если cos a = -1/2 ; 180°/2<a<180°
sin(45°-a) если cos a= -1/2;
90<a<180° по условию угол находится во второй четверти. Синус в этой четверти принимает только положительные значения.
Как найти sin a? Вспомним основное тригонометрическое тождество:
cos²a+sin²a=1, отсюда выразим наш синус:
sin²a= 1-cos²a.
Чтобы найти sin a, возведем в корень 1-cos²a
Получаем: sin a = √1-cos²a.
Подставляем известное нам выражение cos a, которое мы не забываем возвести в квадрат.
sin a = √1-(-1/4) = √1+1/4 = √5/4 = √5/2
sin(45°-a)=sin45°cosa-cos45°sina= √2/2*(-1/2)-√2/2*√5/2= Помним, что синус во второй четверти положительный.
Получаем ответ
1) 11
2) 4
Объяснение:
1) 20 + 8х - х² > 0
- х²+8x+20 = 0
D = 64+80 = 144 =
x1 = x2 =
- -2 + 10 -
Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î
Нам подходит промежуток (-2; 10)
Определим целые числа в промежутке: -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Всего целых решений: 11
2) 4x² - 17x + 4 ≤ 0
4x² - 17x + 4 = 0
D = 289-64 = 225 =
x1 = x2 =
+ - 4 +
Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î Î
Нам подходит промежуток [; 4]
Определим целые числа в промежутке: 1, 2, 3, 4
Всего целых решений: 4
Переведем все значения в градусы, чтобы было привычнее.
π=180°
/ - так обозначается черта дроби.
переведу число -0,5 в дробь, тоже для удобства = -1/2
sin(180°/4-a) если cos a = -1/2 ; 180°/2<a<180°
sin(45°-a) если cos a= -1/2;
90<a<180° по условию угол находится во второй четверти. Синус в этой четверти принимает только положительные значения.
Как найти sin a? Вспомним основное тригонометрическое тождество:
cos²a+sin²a=1, отсюда выразим наш синус:
sin²a= 1-cos²a.
Чтобы найти sin a, возведем в корень 1-cos²a
Получаем: sin a = √1-cos²a.
Подставляем известное нам выражение cos a, которое мы не забываем возвести в квадрат.
sin a = √1-(-1/4) = √1+1/4 = √5/4 = √5/2
sin(45°-a)=sin45°cosa-cos45°sina= √2/2*(-1/2)-√2/2*√5/2= Помним, что синус во второй четверти положительный.
Получаем ответ