а) х2 – 4х + 3=0; б) 7х2 – х – 8 =0. в) х2 + 9х = 0;
№2. Решите биквадратное уравнение: х4 – 19х2+48=0 .
№ 3. Решите рациональное уравнение: 5/(х-2)-3/(х+2)=20/(х^2-4)
№ 4 . Разложите на множители квадратные трехчлены:
а) х2 – 15х + 26 в виде произведения и суммы корней ; б) 4у2+3у – 7
№ 5 Разность корней уравнения 2х2 – 3х+с=0 равна 2,5. Найдите с
400 : 34 = 12 (кг) фруктов купили
Если нужно узнать сколько груш и сколько яблок:
За Х - количество килограммов яблок,
за У - количество килограммов груш
Решаем :
30х + 38у = 400
х + у = 12
из второго уравнения:
х = 12 - у
подставляем в 1 уравнение :
30 * (12 - у) + 38у = 400
360 - 30у + 38у = 400
8у = 40
у = 5 (кг) купили груш
подставляем во 2 уравнение:
х + 5 = 12
х = 12 - 5
х = 7 (кг) купили яблок
Проверка
(30 * 7) + (38 * 5) = 210 + 190 = 400 р - заплатили
ответ: 400 рублей
Для удобства вычислений, поменяем местами строчки системы ЛНУ .
1 строку * 7 - 5*2 строку ; 1стр*3 - 5*3стр ; 1стр*2-5*4стр
2стр - 4*3стр ; 3 стр + 4стр
Для перехода к последней матрице разделили 3 строку на (-5) , а 4 строку на 5 .
Ранг матрицы системы ( та, что записана до вертикальной черты, размером 4×4 ), равен 3, так как две последние строки равны, а значит одну из строк можно вычеркнуть. Ранг расширенной матрицы ( та, что записана без учёта вертикальной черты, размером 4×5 ) равен 4, так как2 последние строки различны. Ранги указанных матриц НЕ равны, то есть условия теоремы Кронекера-Капелли не выполняются, значит система НЕ ИМЕЕТ РЕШЕНИЙ, то есть система НЕСОВМЕСТНА .
Общее решение системы можно было бы записать лишь в случае, если бы система была совместна и не определена .