Покажем, чтоЧастное и остаток от деления могут быть найдены в ходе выполнения следующих шагов:1. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой .2. Умножаем делитель на полученный выше результат деления (на первый элемент частного). Записываем результат под первыми двумя элементами делимого .3. Вычитаем полученный после умножения многочлен из делимого, записываем результат под чертой .4. Повторяем предыдущие 3 шага, используя в качестве делимого многочлен, записанный под чертой.5. Повторяем шаг 4.
1) на формулы сокращенного умножения 2) на формулы сокращенного умножения и вынесение общего множителя 3) на формулы сокращенного умножения 4) решение квадратных уравнений и вынесение общего множжителя 5) Чтобы доказать делимость, разделим данное выражение на 8. Раскроем скобки, вынесем общий множитель и получим квадратное выражение.
Натуральные числа - это числа больше нуля, следовательно и полученное нами квадратное выражение должно быть больше нуля. Получаем квадратное неравенство, которое и решаем.
Т.к. при коэффициент положительный, ветви параболы смотрят вверх, следовательно больше нуля заштрихованная область.
Нам же нужны значения n>0, а они входят в ответ. Значит данное в условии выражение делится на 8 при любом натуральном n. Что и требовалось доказать.
2) на формулы сокращенного умножения и вынесение общего множителя
3) на формулы сокращенного умножения
4) решение квадратных уравнений и вынесение общего множжителя
5) Чтобы доказать делимость, разделим данное выражение на 8. Раскроем скобки, вынесем общий множитель и получим квадратное выражение.
Натуральные числа - это числа больше нуля, следовательно и полученное нами квадратное выражение должно быть больше нуля. Получаем квадратное неравенство, которое и решаем.
Т.к. при коэффициент положительный, ветви параболы смотрят вверх, следовательно больше нуля заштрихованная область.
Нам же нужны значения n>0, а они входят в ответ. Значит данное в условии выражение делится на 8 при любом натуральном n. Что и требовалось доказать.