Раскладываем на множители sin+sin3x+sin5x sinx+sin3x+sin5x=sinx+sin(x+2x)+sin(3x+2x)=sinx+sinx*cos2x+cosx*sin2x+sin3x*cos2x+cos3x*sin2x=sinx+sinx*cos2x+2sinx*cos^2x+sin(2x+x)*cos2x+cos(x+2x)*sin2x=sinx+sinx*cos2x+2sinx*cos^2x+(2sinx*cos^2x+cos2x*sinx)*cos2x+(cosx*cos2x-sinx*sin2x)*2sinx*cosx=sinx(1+cos2x+2cos^2x+(2cos^2x+cos2x)*cos2x+2cosx*(cosx*cos2x-sinx*sin2x))=sinx(1+cos2x+2cos^2x+cos^2(2x)+2cos^2x*cos2x+2cos^2x*cos2x-4sin^2x*cos^2x)=sinx(1+cos2x+2cos^2x+cos^2(2x)+4cos^2x*cos2x-sin^2(2x))=sinx(2cos^2(2x)+cos2x+2cos^2x+4cos^2x*cos2x)=sinx(2cos^2(2x)+cos2x+1+cos2x+4cos^2x*cos2x)=sinx(2cos^2(2x)+2cos(2x)+2(1+cos2x)*cos2x+1)=sinx(2cos^2(2x)+2cos2x+2cos2x+2cos^2(2x)+1)=sinx(4cos^2(2x)+4cos(2x)+1)=sinx*(2cos(2x)+1)^2
Разложим на множители: n³ + 3n² + 2n = n(n² + 3n + 2) n² + 3n + 2 = 0 n₁ + n₂ = -3 n₁n₂ = 2 n₁ = -1; n₂ = -2 n³ + 3n² + 2n = n(n + 1)(n + 2) Как видно, выражение представлено в виде трёх последовательных натуральных чисел. Произведение трёх последовательных натуральных чисел обязательно делится на 3 (т.к. один из множителей будет делиться нацело на 3). Помимо этого, среди двух последовательных натуральных чисел одно обязательно будет делиться на 2. Отсюда делаем вывод, что n(n + 1)(n + 2) делиться и на 2, и на 3, а значит, и на 6 при любом натуральном n.
sinx+sin3x+sin5x=sinx+sin(x+2x)+sin(3x+2x)=sinx+sinx*cos2x+cosx*sin2x+sin3x*cos2x+cos3x*sin2x=sinx+sinx*cos2x+2sinx*cos^2x+sin(2x+x)*cos2x+cos(x+2x)*sin2x=sinx+sinx*cos2x+2sinx*cos^2x+(2sinx*cos^2x+cos2x*sinx)*cos2x+(cosx*cos2x-sinx*sin2x)*2sinx*cosx=sinx(1+cos2x+2cos^2x+(2cos^2x+cos2x)*cos2x+2cosx*(cosx*cos2x-sinx*sin2x))=sinx(1+cos2x+2cos^2x+cos^2(2x)+2cos^2x*cos2x+2cos^2x*cos2x-4sin^2x*cos^2x)=sinx(1+cos2x+2cos^2x+cos^2(2x)+4cos^2x*cos2x-sin^2(2x))=sinx(2cos^2(2x)+cos2x+2cos^2x+4cos^2x*cos2x)=sinx(2cos^2(2x)+cos2x+1+cos2x+4cos^2x*cos2x)=sinx(2cos^2(2x)+2cos(2x)+2(1+cos2x)*cos2x+1)=sinx(2cos^2(2x)+2cos2x+2cos2x+2cos^2(2x)+1)=sinx(4cos^2(2x)+4cos(2x)+1)=sinx*(2cos(2x)+1)^2
теперь раскладываем cosx+cos3x+cos5x
cosx+cos3x+cos5x=cosx+cos(2x+x)+cos(2x+3x)=cosx+cos2x*cosx-sin2x*sinx+cos2x*cos3x-sin2x*sin3x=cosx+cos2x*cosx-2sin^2x*cosx+cos2x*cos(x+2x)-2sinx*cosx*sin(x+2x)=cosx+cos2x*cosx-2sin^2x*cosx+cos2x*(cosx*cos2x-2sin^2x*cosx)-2sinx*cosx*sin(x+2x)=cosx(1+cos2x-2sin^2x+cos^2(2x)-2sin^2x*cos2x-2sinx*(sinx*cos2x+cosx*sin2x))=cosx(2cos2x+cos^2(2x)-2sin^2x*cos2x-2sin^2x*cos2x-4sin^2x*cos^2x)=cosx(2cos2x+cos^2(2x)-4sin^2x*cos2x-4sin^2x*cos^2x)=cosx(2cos2x+cos^2(2x)-2(1-cos2x)*cos2x-sin^2(2x))=cosx(2cos2x+cos^2(2x)-sin^2(2x)-2cos2x+2cos^2(2x))=cosx(2cos^2(2x)-1+2cos2x-2cos2x+2cos^2(2x))=cosx(4cos^2(2x)-1)=cosx(2cos2x-1)(2cos2x+1)
подставляем в уравнение:
(sinx*(2cos(2x)+1)^2)/(cosx*(2cos2x-1)(2cos2x+1))+2tgx=0
tgx*(2cos(2x)+1)/(2cos2x-1)+2tgx=0
tgx*((2cos(2x)+1)/(2cos2x-1)+2)=0
tgx=0
x1=pi*n
(2cos2x+1)/(2cos2x-1)+2=0
(2cos2x+1+4cos2x-2)/(2cos2x-1)=0
(6cos2x-1)/(2cos2x-1)=0
6cos2x-1=0
cos2x=1/6
2x=arccos(1/6)+2pi*n
x2=0,5arccos(1/6)+pi*n
2x=-arccos(1/6)+2pi*n
x3=-0,5arccos(1/6)+pi*n
ответ: x1=pi*n; x2=0,5arccos(1/6)+pi*n; x3=-0,5arccos(1/6)+pi*n
n³ + 3n² + 2n = n(n² + 3n + 2)
n² + 3n + 2 = 0
n₁ + n₂ = -3
n₁n₂ = 2
n₁ = -1; n₂ = -2
n³ + 3n² + 2n = n(n + 1)(n + 2)
Как видно, выражение представлено в виде трёх последовательных натуральных чисел.
Произведение трёх последовательных натуральных чисел обязательно делится на 3 (т.к. один из множителей будет делиться нацело на 3).
Помимо этого, среди двух последовательных натуральных чисел одно обязательно будет делиться на 2.
Отсюда делаем вывод, что n(n + 1)(n + 2) делиться и на 2, и на 3, а значит, и на 6 при любом натуральном n.