A Представьте в виде степени выражения (2.1-2.2): 2.1. 1) xóx12; 2) уу11; 3) 22026; 4) 4020. 403; 5) (0,3). (0,3)29; 6) (8,4)3. (8,4)15; 31 2.7 16 2. 15 114 4 7) ; 8) 15 119 ; 19 9) 4 128 4. ; 9 19 9 (2) 10) (-5)*. (-5); 11) (4) () 13) (-e) (-e)*'; 14(2): 69 ; 12)(-6,2)6 -(-6,2)"; 2. ; 15)(-1,4k) :(-1,4k)20.
1) Номер не может начинаться с 0.
Значит, на 1 месте любая из 6 цифр, кроме 0 (6 вариантов).
На 2 месте любая из 6 оставшихся, в том числе и 0 (6 вариантов).
На 3 месте любая из 5, потом любая из 4, и, наконец, любая из 3.
Всего 6*6*5*4*3 = 2160 вариантов.
2) На 1 и последнем местах цифры 1 и 9.
Либо 1 _ _ _ 9, либо 9 _ _ _ 1.
В каждом случае 5*4*3 = 60 вариантов. Всего 120 вариантов.
3) Цифры 5 и 7 стоят рядом, и они есть обязательно. Варианты:
57 _ _ _; _ 57 _ _; _ _ 57 _; _ _ _ 57; 75 _ _ _; _ 75 _ _; _ _ 75 _; _ _ _ 75.
Всего 8*5*4*3 = 40*12 = 480 вариантов.
8. Сочетания.
Водители:
C(2,8) = 8*7/2 = 56/2 = 28.
Но у нас чётко обозначено: один рулевой, второй штурман.
Поэтому умножаем на 2 и получаем 56.
Механики:
C(3, 12) = 12*11*10/(1*2*3) = 2*11*10 = 220.
Всего команд 56*220 = 12320
9. Тоже сочетания
С(5, 18) = 18*17*16*15*14/(1*2*3*4*5) = 3*17*4*3*14 = 51*12*14 = 8568 вариантов.