Пусть 2-я труба наполняет бассейн за х часов, тогда 1-я труба наполняет бассейно за (х -18) часов. производительность (работа за 1 час) 1-й трубы: 1/(х -18), 2-й трубы: 1/х. их общая производительность: 1/(х -18) + 1/х. работая вместе, они сделали всю работу (равную 1) за 12 часов (1/(х -18) + 1/х)·12 = 112·(х + х - 18) = х² - 18х х² - 42х + 216 = 0 d = 42² - 4·216 = 900 √d = 30 х₁ = (42 - 30) : 2 = 6 (не подходит по условию , даже работая вместе трубы наполняют бассейн за 12 часов! ) х₂ = (42 + 30) : 2 = 36 ответ: 2-я труба наполняет бассейн за 36 часов
1)Решение системы уравнений (7; -4,5);
2)Решение системы уравнений (3; -1).
Объяснение:
Решить систему уравнений :
1)-x+ 4у = -25
3х – 2у= 30 метод подстановки
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
-х= -25-4у
х=25+4у
3(25+4у) – 2у= 30
75+12у-2у=30
10у=30-75
10у= -45
у= -4,5
х=25+4у
х=25+4*(-4,5)
х=25-18
х=7
Решение системы уравнений (7; -4,5)
2)5х — y = 16
8х + Зу = 21 метод подстановки
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
-у=16-5х
у=5х-16
8х + З(5х-16) = 21
8х+15х-48=21
23х=21+48
23х=69
х=3
у=5х-16
у=5*3-16
у=15-16
у= -1
Решение системы уравнений (3; -1).