ответ:
) а) f(x) = 1/5x5 - x3 + 4.
f'(х) = 1/5 * 5 * х4 – 3х² = х4 – 3х².
б) f(x) = (3x – 1)/x3.
производная произведения: (f * g)' = f' * g + f * g'.
f'(х) = (3x – 1)' * x3 + (3x – 1) * (x3)' = 3 * x3 + (3x – 1) * 3x² = 3x3 + 9x3 – 3x² = 12x3 – 3x².
в) f(x) = 1/(2cosx).
производная дроби: (f/g)' = (f' * g - f * g')/g^2.
f'(х) = (1' * 2cosx - 1* (2cosx)')/( 2cosx)^2 = (0 - 1* (-2sinx))/2cos²x = sinx/cos²x.
2) а) f(x) = xsinx.
f'(х) = х' * sinx + х * (sinx)' = sinx + хcosx.
x = п/2; f'(п/2) = sinп/2 + п/2cosп/2 = 1 + п/2 * 0 = 1.
б) f(x) = (2x - 3)6.
f'(х) = 6(2х – 3)5 * (2х – 3)' = 6(2х – 3)5 * 2 = 12(2х – 3)5.
х = 1; f'(1) = 12(2 * 1 – 3)5 = 12 * (-1)5 = -12.
3) а) f(x) = 2sinx – x.
f'(х) = 2cosx – 1.
f'(х) = 0; 2cosx – 1 = 0.
2cosx = 1.
cosx = ½.
х =±п/3 + 2пn, n – целое число.
b) f(x) = x5 + 20x².
f'(х) = 5х4 + 20х.
f'(х) = 0; 5х4 + 20х = 0.
х(5х3 + 2) = 0.
отсюда х = 0.
или 5х3 + 2 = 0; 5х3 = -2; х3 = -2/5; х = 3√(-2/5).
объяснение:
1) -3х+6у-12х-9у= -15x-3y
2) 6mn-2m-11mn-3n-5m=-5mn-7m-3n
1) (3a-7b)-(4a+8b)= 3a-7b-4a-8b=-a-15b
2)-(5m-7n)+(2n+12m)=-5m+7n+2n+12m=7m+9n
3) 3x(1-4x)-5x(6x+7) =3x-12x-30x-35x=-74x
4) 5c(2c+a)+(3c-2a)(5a-2c)=10c^2+5ca+15ca+6c^2-10a^2+4ca=16c^2+24ca-10a^2
5) (5y-3) куб. -(2-5y)куб=125y^3-225y^2+45y-27-8+150y - 60y^2+125y^3 =250y^3-285y^2+195y-32
1) 13(а-2)+10(4-а)=23
13a-26+40-10a=23
3a=9
a=3
2) (2х-1)(х+1)-х куб.=(х-3)куб -10
2x^2+2x-x-1-x^3=x^3-6x^2+27x-10
8x^2-28x-2x^3=-9
x(8x-28-2x^2)=-9
x1=0 (8x-28-2x^2)=-9
-2x^2+8x-19=0
D=8^2-4*(-2)-(-19)=-88(нет корней)
ответ:0
3) x/4 + x/8 =3/2
3x/8=3/2
3x=8*3/2
3x=12
x=4
ответ:
) а) f(x) = 1/5x5 - x3 + 4.
f'(х) = 1/5 * 5 * х4 – 3х² = х4 – 3х².
б) f(x) = (3x – 1)/x3.
производная произведения: (f * g)' = f' * g + f * g'.
f'(х) = (3x – 1)' * x3 + (3x – 1) * (x3)' = 3 * x3 + (3x – 1) * 3x² = 3x3 + 9x3 – 3x² = 12x3 – 3x².
в) f(x) = 1/(2cosx).
производная дроби: (f/g)' = (f' * g - f * g')/g^2.
f'(х) = (1' * 2cosx - 1* (2cosx)')/( 2cosx)^2 = (0 - 1* (-2sinx))/2cos²x = sinx/cos²x.
2) а) f(x) = xsinx.
f'(х) = х' * sinx + х * (sinx)' = sinx + хcosx.
x = п/2; f'(п/2) = sinп/2 + п/2cosп/2 = 1 + п/2 * 0 = 1.
б) f(x) = (2x - 3)6.
f'(х) = 6(2х – 3)5 * (2х – 3)' = 6(2х – 3)5 * 2 = 12(2х – 3)5.
х = 1; f'(1) = 12(2 * 1 – 3)5 = 12 * (-1)5 = -12.
3) а) f(x) = 2sinx – x.
f'(х) = 2cosx – 1.
f'(х) = 0; 2cosx – 1 = 0.
2cosx = 1.
cosx = ½.
х =±п/3 + 2пn, n – целое число.
b) f(x) = x5 + 20x².
f'(х) = 5х4 + 20х.
f'(х) = 0; 5х4 + 20х = 0.
х(5х3 + 2) = 0.
отсюда х = 0.
или 5х3 + 2 = 0; 5х3 = -2; х3 = -2/5; х = 3√(-2/5).
объяснение:
1) -3х+6у-12х-9у= -15x-3y
2) 6mn-2m-11mn-3n-5m=-5mn-7m-3n
1) (3a-7b)-(4a+8b)= 3a-7b-4a-8b=-a-15b
2)-(5m-7n)+(2n+12m)=-5m+7n+2n+12m=7m+9n
3) 3x(1-4x)-5x(6x+7) =3x-12x-30x-35x=-74x
4) 5c(2c+a)+(3c-2a)(5a-2c)=10c^2+5ca+15ca+6c^2-10a^2+4ca=16c^2+24ca-10a^2
5) (5y-3) куб. -(2-5y)куб=125y^3-225y^2+45y-27-8+150y - 60y^2+125y^3 =250y^3-285y^2+195y-32
1) 13(а-2)+10(4-а)=23
13a-26+40-10a=23
3a=9
a=3
2) (2х-1)(х+1)-х куб.=(х-3)куб -10
2x^2+2x-x-1-x^3=x^3-6x^2+27x-10
8x^2-28x-2x^3=-9
x(8x-28-2x^2)=-9
x1=0 (8x-28-2x^2)=-9
-2x^2+8x-19=0
D=8^2-4*(-2)-(-19)=-88(нет корней)
ответ:0
3) x/4 + x/8 =3/2
3x/8=3/2
3x=8*3/2
3x=12
x=4