Для начала, можно посмотреть несколько последовательных степеней двойки: 1 2 2 4 3 8 4 16 5 32 6 64 7 128 8 256 9 512 Как видим, последняя цифра меняется так: 2, 4, 8, 6. А далее эта последовательность повторяется. То есть имеем повторяющуюся последовательность из четырёх цифр. Чтобы понять, на какую из этих цифр заканчивается 2^2015, мы разделим 2015 на 4. Получим 503 и остаток 3.
Чтобы далее было понятно, рассмотрим варианты: 1) если бы разделилось нацело (как, например, четвёртая степень), то число бы оканчивалось на шесть (смотри выше посчитанные степени) 2) если был бы остаток 1 (как, например, для пятой степени), то число бы оканчивалось на 2 3) если был бы остаток 2 (как, например, для шестой степени), то число бы оканчивалось на 4 4) а если остаток 3 (как, например, для седьмой степени), то число будет оканчиваться на 8
Соответственно, последняя цифра числа 2^2015 будет восемь.
Произведение двух наибольших = 225 Чтобы получить 225, можно перемножить такие разные натуральные числа: 225*1, 75*3, 45*5, 25*9.
Произведение двух наименьших = 16 Чтобы получить 16, можно перемножить такие разные натуральные числа: 16*1, 8*2.
Т.к. есть 2 самых меньших и 2 самых больших, то меньшие не могут быть больше больших (очевидно же). Поэтому есть лишь вариант 25,9 и 8,2. В любых других случаях одно из больших чисел меньше одного из меньших чисел, чего не может быть. Сумма всех чисел = 25+9+8+2 = 44
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
Как видим, последняя цифра меняется так: 2, 4, 8, 6.
А далее эта последовательность повторяется. То есть имеем повторяющуюся последовательность из четырёх цифр.
Чтобы понять, на какую из этих цифр заканчивается 2^2015, мы разделим 2015 на 4. Получим 503 и остаток 3.
Чтобы далее было понятно, рассмотрим варианты:
1) если бы разделилось нацело (как, например, четвёртая степень), то число бы оканчивалось на шесть (смотри выше посчитанные степени)
2) если был бы остаток 1 (как, например, для пятой степени), то число бы оканчивалось на 2
3) если был бы остаток 2 (как, например, для шестой степени), то число бы оканчивалось на 4
4) а если остаток 3 (как, например, для седьмой степени), то число будет оканчиваться на 8
Соответственно, последняя цифра числа 2^2015 будет восемь.
Чтобы получить 225, можно перемножить такие разные натуральные числа:
225*1, 75*3, 45*5, 25*9.
Произведение двух наименьших = 16
Чтобы получить 16, можно перемножить такие разные натуральные числа:
16*1, 8*2.
Т.к. есть 2 самых меньших и 2 самых больших, то меньшие не могут быть больше больших (очевидно же). Поэтому есть лишь вариант 25,9 и 8,2. В любых других случаях одно из больших чисел меньше одного из меньших чисел, чего не может быть.
Сумма всех чисел = 25+9+8+2 = 44