Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х . А за у дней может закончить Алиса, тогда еѐ производительность равна / у . Т.к. они могут напечатать курсовую работу за 6 дней, то /х + /у = 1/ Если сначала % = / части курсовой напечатает Катя, а затем завершит работу Алиса, то Алисе остается % = / части курсовой. Вся курсовая работа будет выполнена за 12 дней т.е. ( /) х + (/ ) у = . Решим систему: /х + /у = / , (/) х + (/ ) у = .
+ = , + = ;
у = − , ; + * ( − , ) = *( − , )
у = − , ; , ² − + = ;
у = − , ; ² − + = ;
² − + = ; = , у = или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса. Значит, Катя может напечатать курсовую работу за 10 дней. ответ. за 10 дней
Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
Решим систему:
/х + /у = / ,
(/) х + (/ ) у = .
+ = ,
+ = ;
у = − , ;
+ * ( − , ) = *( − , )
у = − , ;
, ² − + = ;
у = − , ;
² − + = ;
² − + = ;
= , у =
или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней
1) (х-2)/(х²+4х-21)
ОДЗ: х²+4х-21≠0
x²+4x-21=0
x₁+x₂=-4
x₁*x₂=-21
x₁=-7; x₂=3
Дробь не имеет смысла, когда её знаменатель равен 0, потому, что на 0 делить нельзя.
ответ: x²+4x-21=0 при х∈{-7;3}
2) 5x²-8=(x-4)(3x-1)+8x
5x²-8=3x²-x-12x+4+8x
2x²+5x-12=0
D=5²-4*2*(-12)=25+96=121 √121=11
x₁=(-5+11)/2*2=16/4=1.5
x₂=(-5-11)/2*2=-6/4=--4
3) x²+2x+c=0 x₁=6
6²+2*6+c=0
36+12+c=0
48+c=0
c=-48
Проверка: х²+2х-48=0
х₁+х₂=-2
х₁*х₂=-48
х₁=6; х₂=-8
6+(-8)=-2; 6*(-8)=-48