Они встретятся тогда, когда между ними будет ровно круг. Т.е. велосипедист обгонит пешехода на ДЛИНУ КРУГА. L - длина круга, тогда 1.6vt-vt=L - условие, при котором первый обгонит второго на L, т.е. на круг 0.6vt=L vt=1,66l - т.е. пешеход со скоростью v с временем t должен быть на длине 1,66L для первого ОБГОНА, т.е. на расстоянии 0.66l от начала круга для второго обгона: 1,6vt-vt=2L vt=3,33l, т.е. пешеход должен быть на расстоянии 0,33 длины круга
на третий раз формула таже, vt=5l, т.е. обгон будет ровно на старте круга
Получим
(x - 1)*(x + 3)^2 - 5*(x + 3) = 0
Выносим общий множитель, имеем
( x + 3)*( (x - 1)*( x + 3) - 5) = 0
Аккуратно раскрываем скобки, приводим подобные
( x + 3)*( x^2 + 3x - x - 3 - 5) = 0
( x + 3 )*( x^2 + 2x - 8) = 0
Приравниваем каждое к нулю и решаем отдельно
(1)
x + 3 = 0
x₁ = - 3
(2)
x^2 + 2x - 8 = 0
Решим квадратное уравнение через дискриминант
D = b^2 + 4ac = 4 + 4*8 = 36 = 6^2 > 0
x₂ = ( - 2 + 6)/2 = 4/2 = 2;
x₃ = ( - 2 - 6)/2 = - 8/2 = - 4;
ответ :
- 4; - 3; 2
L - длина круга, тогда
1.6vt-vt=L - условие, при котором первый обгонит второго на L, т.е. на круг
0.6vt=L
vt=1,66l - т.е. пешеход со скоростью v с временем t должен быть на длине 1,66L для первого ОБГОНА, т.е. на расстоянии 0.66l от начала круга
для второго обгона:
1,6vt-vt=2L
vt=3,33l, т.е. пешеход должен быть на расстоянии 0,33 длины круга
на третий раз формула таже, vt=5l, т.е. обгон будет ровно на старте круга
с четвертого раза всё повторяется
ОТВЕТ: 3 точки