Чему равна вероятность того, что случайно выбранный горшок будет с дефектами (вероятность события A)?
Так как в данном случае вероятность - отношение числа благоприятных исходов к числу всех исходов, то:
P(A) = 28 / 400 = 0.07
Чему равна вероятность того, что случайно выбранный горшок не имеет дефектов (вероятность события B)?
Так как события A и B - противоположные, то есть ровно одно из них сбудется для одного произвольно выбранного горшка, то:
P(B) = 1 - P(A) = 1 - 0.07 = 0.93
Задача решена!
Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.
Чему равна вероятность того, что случайно выбранный горшок будет с дефектами (вероятность события A)?
Так как в данном случае вероятность - отношение числа благоприятных исходов к числу всех исходов, то:
P(A) = 28 / 400 = 0.07
Чему равна вероятность того, что случайно выбранный горшок не имеет дефектов (вероятность события B)?
Так как события A и B - противоположные, то есть ровно одно из них сбудется для одного произвольно выбранного горшка, то:
P(B) = 1 - P(A) = 1 - 0.07 = 0.93
Задача решена!
ответ: 0.93.Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.