Ax+By+C = 0, где A, B, C - это константы, (A и B одновременно не равны нулю) Это общее уравнение прямой на координатной плоскости XOY. Показать (или доказать) это можно разными Так вот: 6x+3y+18 = 0, это уравнение прямой. Чтобы построить эту прямую на координатной плоскости достаточно найти две различные точки, принадлежащие этой прямой. Найдем какие-либо две точки (два частных решения этого уравнения. Например: положим x_1=0, подставим это в уравнение, получим 3y+18 = 0, <=> y = -18/3 = -6. Первая точка это x_1=0, и y_1=-6. Аналогично находим вторую точку прямой: положим y_2=0, подставим это значение в уравнение прямой, получим 6x+18=0, <=> x=-18/6 = -3. Вторая точка у нас имеет координаты x_2=-3 и y_2 = 0. Теперь следует отметить эти точки на координатной плоскости XOY (на графике), затем взять линейку и с ручки или карандаша провести через эти точки прямую линию. Это и будет график данной в условии прямой.
где A, B, C - это константы, (A и B одновременно не равны нулю)
Это общее уравнение прямой на координатной плоскости XOY.
Показать (или доказать) это можно разными
Так вот: 6x+3y+18 = 0, это уравнение прямой. Чтобы построить эту прямую на координатной плоскости достаточно найти две различные точки, принадлежащие этой прямой. Найдем какие-либо две точки (два частных решения этого уравнения. Например: положим x_1=0, подставим это в уравнение, получим 3y+18 = 0, <=> y = -18/3 = -6.
Первая точка это x_1=0, и y_1=-6.
Аналогично находим вторую точку прямой: положим y_2=0, подставим это значение в уравнение прямой, получим 6x+18=0, <=> x=-18/6 = -3.
Вторая точка у нас имеет координаты x_2=-3 и y_2 = 0.
Теперь следует отметить эти точки на координатной плоскости XOY (на графике), затем взять линейку и с ручки или карандаша провести через эти точки прямую линию. Это и будет график данной в условии прямой.
Объяснение:
(х + 12)(х – 4)(х – 20) > 0
решим неравенство методом интервалов
приравняем исходное выражение к 0 и найдем корни
(х + 12)(х – 4)(х – 20) =0
x₁=-12 ; x₂=4; x₃=20
нанесем корни на числовую прямую и найдем знаки выражения на каждом интервале
если перемножить скобки то коэффициент при х³ будет 1.
1>0 тогда при больших х знак выражения будет (+)
соответственно при малых х знак выражения будет (-)
в остальных интервалах знаки чередуются
(-12)420>
- + - +
так как исходное выражение >0 то выбираем интервалы со знаком (+)
х∈(-12;4)∪(20;+∞)