1) Область определения - это проекция графика функции на ось Ох.
Обозначается как D(f) или D(у).
Область определения параболы - множество всех действительных чисел, потому что она проецируется на любую точку оси Ох.
Обычно запись: D(f) = R или D(f) = (-∞; +∞).
2) Область значений - это проекция графика на ось Оу.
Обозначается как E(f) или E(y).
Область значений параболы определяется координатами вершины, конкретно у₀, значение у вершины параболы.
Если коэффициент перед х отрицательный, ветви параболы направлены вниз, область значений Е(f) будет (-∞; у₀], то есть от вершины параболы вниз до - бесконечности.
А если коэффициент перед х положительный, ветви параболы направлены вверх, область значений Е(f) будет [y₀; +∞), то есть от вершины параболы вверх до + бесконечности.
Проще говоря, область определения - это значения х, при которых парабола существует, а область значений - значения у, в каких пределах парабола существует.
3) Определить.
Область определения квадратичной функции (график парабола) - множество всех действительных чисел, R, смотри выше.
Область значений: найти координаты вершины параболы, сначала х₀ по формуле х₀= -b/2a, потом подставить вычисленное значение х в уравнение параболы и вычислить у₀.
Теперь можно определить область значений параболы, от вершины вниз до - бесконечность, или от вершины вверх до + бесконечности.
В решении.
Объяснение:
1) Область определения - это проекция графика функции на ось Ох.
Обозначается как D(f) или D(у).
Область определения параболы - множество всех действительных чисел, потому что она проецируется на любую точку оси Ох.
Обычно запись: D(f) = R или D(f) = (-∞; +∞).
2) Область значений - это проекция графика на ось Оу.
Обозначается как E(f) или E(y).
Область значений параболы определяется координатами вершины, конкретно у₀, значение у вершины параболы.
Если коэффициент перед х отрицательный, ветви параболы направлены вниз, область значений Е(f) будет (-∞; у₀], то есть от вершины параболы вниз до - бесконечности.
А если коэффициент перед х положительный, ветви параболы направлены вверх, область значений Е(f) будет [y₀; +∞), то есть от вершины параболы вверх до + бесконечности.
Проще говоря, область определения - это значения х, при которых парабола существует, а область значений - значения у, в каких пределах парабола существует.
3) Определить.
Область определения квадратичной функции (график парабола) - множество всех действительных чисел, R, смотри выше.
Область значений: найти координаты вершины параболы, сначала х₀ по формуле х₀= -b/2a, потом подставить вычисленное значение х в уравнение параболы и вычислить у₀.
Теперь можно определить область значений параболы, от вершины вниз до - бесконечность, или от вершины вверх до + бесконечности.
Прикладываю небольшую иллюстрацию.
I автомобиль:
Скорость х км/ч
Время на весь путь (1/х) ч.
II автомобиль :
I-я половина пути 1 : 2 = 1/2 = 0,5
Скорость (х-11) км/ч
Время на этот путь 0,5/(х-11) часов
II-я половина пути 0,5
Скорость 66 км/ч
Время на этот путь 0,5/66 часов.
Зная, что автомобили прибыли одновременно, составим уравнение:
1/х = 0,5/(х-11) + 0,5/66
1/x - 0.5/(x-11) = 0.5/66
знаменатели дробей не должны быть равны 0 :
х ≠0 ; х≠ 11
(x - 11 - 0.5x) / x(x-11) = 0.5/66
(0.5x-11)/ (x² - 11x) = 0.5/66
0.5(x² - 11x) = 66(0.5x-11) |*2
x² -11x = 2*66*0.5x - 2*66*11
x² -11x = 66x - 1452
x² - 11x -66x + 1452=0
x² - 77x +1452 =0
D = (-77)² - 4*1 * 1452 = 5929 - 5808 = 121 = 11²
D>0 - два корня уравнения
х₁ = ( - (-77) - 11)/(2 *1) = (77-11)/2 = 66/2 = 33 не удовлетворяет условию задачи (<42 км/ч)
х₂ = (77+11)/2 = 88/2 = 44 (км/ч) скорость I автомобиля
ответ: 44 км/ч скорость I автомобиля.