Точки экстремума - это точки, которые внешне выглядят на графике, как бугорки и впадинки. Чем отличаются эти точки? Тем, что в них производная функции обращается в нуль. 1) Вычислим её производную и приравняем к 0:
Понятно, что уравнение -4/x^3 = 0 корней не имеет. То есть, нет совсем точек, обращающих производную в 0. Поэтому нет и точек экстремума.
2)Аналогично рассмотрим второй случай.
Найдём производную от этой функции:
Приравниваем производную 0. Ясно, что y' = 0 корней не имеет, так как в числителе дроби уже стоит 1, а нулю знаменатель не может быть равен. Следовательно, делаем вывод мы, данная функция тоже не имеет точек экстремума. Мы ответили на все вопросы задачи.
Пусть расстояние до места, когда все участники оказались в одной точке между А и В, равно 1, а х часов был в пути до этой точки мотоциклист, х +1 часов был в пути до этой точки велосипедист, х + 4 часа был в пути до этой точки пешеход. Тогда их скорости соответственно были: . Обозначим расстояние от точки встречи до В у километров. Тогда мотоциклист затратил на оставшийся путь ух часов, велосипедист у(х+1) часов, а пешеход у(х+4) часа. Так как мотоциклист прибыл в В на 2 часа раньше, то у(х+1) - ух =2 ух + у - ух =2 у = 2 (км) - расстояние между местом встречи и В. Найдем разность во времени, затраченном велосипедистом и пешеходом на этом расстоянии: 2(х+4) - 2(х+1)= 2х + 8 - 2х - 2 = 6 (ч) ответ: Пешеход пришел в В через 6 часов после велосипедиста.
1)
Вычислим её производную и приравняем к 0:
Понятно, что уравнение -4/x^3 = 0 корней не имеет. То есть, нет совсем точек, обращающих производную в 0. Поэтому нет и точек экстремума.
2)Аналогично рассмотрим второй случай.
Найдём производную от этой функции:
Приравниваем производную 0. Ясно, что y' = 0 корней не имеет, так как в числителе дроби уже стоит 1, а нулю знаменатель не может быть равен.
Следовательно, делаем вывод мы, данная функция тоже не имеет точек экстремума.
Мы ответили на все вопросы задачи.
Обозначим расстояние от точки встречи до В у километров. Тогда мотоциклист затратил на оставшийся путь ух часов, велосипедист у(х+1) часов, а пешеход у(х+4) часа. Так как мотоциклист прибыл в В на 2 часа раньше, то у(х+1) - ух =2
ух + у - ух =2
у = 2 (км) - расстояние между местом встречи и В.
Найдем разность во времени, затраченном велосипедистом и пешеходом на этом расстоянии: 2(х+4) - 2(х+1)= 2х + 8 - 2х - 2 = 6 (ч)
ответ: Пешеход пришел в В через 6 часов после велосипедиста.