ВЫПОЛНИМ ОПЕРАЦИЮ ПОТЕНЦИИРОВАНИЯ ТОГДА 1-2х ≤ 5х+25 так как основание лог меньше1 7х≥-24 х≥-24/7 Промежуток (-24/7 ; +бесконечность)
log3(x-6)+log3(x-8)>log3(27) log3 {(x-6)(x-8)}>log3(27) потенциируем обе части тогда (x-6)(x-8)>27 но тут не получается красивого решения, возможно в условии ошибка?
в третьем lgx (lgx+1) < 0 совокупность двух систем совокупность: первая система: lgx<0 ⇒решений нет (lgx+1)> 0 ⇒ вторая lgx>0 ⇒ промежуток (0;+бесконечность) (lgx+1)< 0 ⇒ lgx<-lg10 ⇒ х<0,1
1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 1)^2*(x + 2) = 0 (x - 1)^2 = 0 x - 1 = 0 x = 1
x + 2 = 0 x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 1)(x - 3) = 0 x^2 = 1 x₁ = 1 x₂= - 1;
x - 3 = 0 x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 4)^2*(x - 3) = 0 x - 4 = 0 x = 4
x - 3 = 0 x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 4)(x + 1) = 0
1-2х ≤ 5х+25 так как основание лог меньше1
7х≥-24
х≥-24/7
Промежуток (-24/7 ; +бесконечность)
log3(x-6)+log3(x-8)>log3(27)
log3 {(x-6)(x-8)}>log3(27) потенциируем обе части тогда
(x-6)(x-8)>27
но тут не получается красивого решения, возможно в условии ошибка?
в третьем lgx (lgx+1) < 0 совокупность двух систем
совокупность:
первая система:
lgx<0 ⇒решений нет
(lgx+1)> 0 ⇒
вторая
lgx>0 ⇒ промежуток (0;+бесконечность)
(lgx+1)< 0 ⇒ lgx<-lg10 ⇒ х<0,1
x∈(0;0,1)
(x - 1)^2*(x + 2) = 0
(x - 1)^2 = 0
x - 1 = 0
x = 1
x + 2 = 0
x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 1)(x - 3) = 0
x^2 = 1
x₁ = 1
x₂= - 1;
x - 3 = 0
x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x - 4)^2*(x - 3) = 0
x - 4 = 0
x = 4
x - 3 = 0
x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 4)(x + 1) = 0
x^2 = 4
x₁ = 2;
x₂ = - 2
x + 1 = 0
x₃ = - 1