Так как нам требуются только двухзначные числа, то ограничим сами множества:
Получаем следующее множество:
Проделаем то же самое и с множеством В:
Вспомним определения: - то есть, это такое множество всех k, так что, либо k в А либо в В, или в А и в В одновременно. - то есть, это такое множество всех k, так что, k и в А и в В одновременно.
В нашем случае: - то есть, это множество всех чисел которые кратны либо 25 либо 15, или 25 и 15 одновременно.
Для пересечения поначалу найдем те числа, которые кратны и 25 и 15 одновременно:
Делаем тоже самое что и при нахождении НОК 2 чисел. Следовательно, это числа вида:
Так как нам нужны только двухзначные числа. То это лишь 1 число, 75:
Так как нам требуются только двухзначные числа, то ограничим сами множества:
Получаем следующее множество:
Проделаем то же самое и с множеством В:
Вспомним определения:
- то есть, это такое множество всех k, так что, либо k в А либо в В, или в А и в В одновременно.
- то есть, это такое множество всех k, так что, k и в А и в В одновременно.
В нашем случае:
- то есть, это множество всех чисел которые кратны либо 25 либо 15, или 25 и 15 одновременно.
Для пересечения поначалу найдем те числа, которые кратны и 25 и 15 одновременно:
Делаем тоже самое что и при нахождении НОК 2 чисел.
Следовательно, это числа вида:
Так как нам нужны только двухзначные числа. То это лишь 1 число, 75:
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.