Чтобы найти точку минимума мы сначало приравняем производную этой функции на ноль и находим критические точки:
y'=((x+8)^2*e^x)'-(3)'=((x+8)^2)'*e^x+(e^x)'*(x+8)^2; используя таблицу формул производных получим e^x(x^2+18x+80)=0, так как e^x всегда положительна можем разделить уравнение на е^x, получим окончательный вид уравнения х^2+18x+80=0, а это квадратное уравнение; решив это уравнение получим корни x1=-10 и x2=--8;
эти точки расчитываем на интервале и узнав положительность и отрицательность интервала; и получим +.-.+ где минимумом функции является точка в интервале -.+; а это точка -8.
1)=8а²(в²-9с²)=8а²(в-3с)(в+3с).
2)=2(х²-12ху+36у²)=2(х-6у)².
3)=-2а(4а4-4а²+1)= -2а(2а²-1)².
4)=5(а³-8в6)=5(а³-(2в²)³)=5(а-2в²)(а²+2ав²+4в4)
5)=(а³+а²)-(ав-а²в)=а²(а+1)-ав(1+а)=(а+1)(а²-ав)=а(а+1)(а-в)
6)=с4(а-1)-с²(а-1)=(а-1)(с4-с²)=с²(а-1)(с²-1)=с²(а-1)(с-1)(с+1).
1)=(х-у)²-7²=(х-у-7)(х-у+7)
2)=а²-(3в-с)²=(а+3в-с)(а-3в+с)
3)=(в³)²-(2в²-3)²=(в³+2в²-3)(в³-2в²+3).
4)=(m³+3³n³)+(m+3n)²=(m+3n)(m²-3mn+9n²)+(m+3n)²=(m+3n)(m²-3mn+9n²+m+3n).
5)=x²-y²+2x+4y-3=(x²+2x+1)-(y²-4y+4)=(x+1)²-(y-2)²=(x+y-1)(x-y+3).
Точка минимума -8
Объяснение:
Чтобы найти точку минимума мы сначало приравняем производную этой функции на ноль и находим критические точки:
y'=((x+8)^2*e^x)'-(3)'=((x+8)^2)'*e^x+(e^x)'*(x+8)^2; используя таблицу формул производных получим e^x(x^2+18x+80)=0, так как e^x всегда положительна можем разделить уравнение на е^x, получим окончательный вид уравнения х^2+18x+80=0, а это квадратное уравнение; решив это уравнение получим корни x1=-10 и x2=--8;
эти точки расчитываем на интервале и узнав положительность и отрицательность интервала; и получим +.-.+ где минимумом функции является точка в интервале -.+; а это точка -8.