Администрация торгового центра выложить пол внутри ювелирного магазина(4) и бутика(2) плиткой. размера 1м×1м. какое минимальное количество упаковок плитки необходимо купить, если в одной упаковке 8 штук(сторона каждой клетки =2метра) больше, если решите
(2^2)^log_2(x-4)<=36
2^{2*log_2(x-4)}<=36
2^log_2{(x-4)^2}<=36
По свойству получаем, что:
(x-4)^2<=36
(x-4)^2-36<=0
(x-4-6)*(x-4+6)<=0
(x-10)*(x+2)<=0
Решаем неравенство методом интервалов. Находим при каких икс левая часть рпвна нулю:
x-10=0 <=> x=10
x+2=0 <=> x=-2
На числовой оси иксов ставим точки -2 и 10. Знаки на получившихся интервалах: плюс, минус, плюс. Нам нужен минус, значит икс принадлежит отрезку [-2;10].
С учетом ОДЗ x c (4; 10].
Находим интервалы возрастания и убывания.
Первая производная:
f'(x) = 2e^(2x) - 3e^x + 1
Находим нули функции. Для этого приравниваем производную к нулю
2e^(2x) - 3e^x + 1 = 0
Откуда:
x₁ = 0
x₂ = -ln(2)
(-∞ ;-ln(2)), f'(x) > 0, функция возрастает
(-ln(2); 0), f'(x) < 0, функция убывает
(0; +∞), f'(x) > 0, функция возрастает
В окрестности точки x = -log(2) производная функции меняет знак с (+)
на (-). Следовательно, точка x = -log(2) - точка максимума. В окрестности точки x = 0 производная функции меняет знак с (-) на (+).
Следовательно, точка x = 0 - точка минимума.